Measurement of the forward - backward asymmetry of charm quark production in e+ e- annihilations at s**(1/2) = 58.4-GeV

The VENUS collaboration Okamoto, A. ; Abe, K. ; Amako, K. ; et al.
Phys.Lett.B 278 (1992) 393-398, 1992.
Inspire Record 320649 DOI 10.17182/hepdata.29244

The forward-backward asymmetry of charm quark production has been measured at an average of energy of 58.4 GeV with the VENUS detector at the TRISTAN e + e - collider. The charm quarks were identified through reconstruction of charged D ∗ mesons using the mass difference between the D ∗ and D 0 mesons. The measured charge asymmetry, -0.49 +.019 −0.17 ±0.04, is consistent with the prediction of the standard theory. The corresponding axial-vector coupling constant is 1.03 +0.40 −0.35 ±0.07.

1 data table match query

No description provided.


Measurements of cross-section and charge asymmetry for e+ e- ---> mu+ mu- and e+ e- ---> tau+ tau- at s**(1/2) = 57.8-GeV

The AMY collaboration Velissaris, C. ; Lusin, S. ; Chung, Y.S. ; et al.
Phys.Lett.B 331 (1994) 227-235, 1994.
Inspire Record 373861 DOI 10.17182/hepdata.38344

With data corresponding to 142 pb −1 accumulated at s = 57.8 GeV by the AMY detector at TRISTAN we measure the cross section of the reactions e + e − → μ + μ − and e + e − → τ + τ − and the symmetry in the angular distributions. For the lowest order cross section we obtain σ μμ = 27.54 ± 0.65 ± 0.95 pb and σ ττ = 28.27 ± 0.87 ± 0.69 pb, and for the forward-backward asymmetry, A μμ = 0.303 ± 0.027 ± 0.008 and A ττ = −0.291 ± 0.040 ± 0.019. These measurements agree with the standard model. Assuming e − μ − τ univrsality we extract the vector and axial coupling constants | gν | = 0.00 ± 0.09 and | g A | = 0.476 ± 0.024. A fit of data to composite models places lower bounds (95% confidence level) on the compositeness scale of 2–4 TeV.

2 data tables match query

Lowest order cross section and forward-backward asymmetry.

Lowest order cross section and forward-backward asymmetry.


Measurement of $g$(a) and $g(V$), the Neutral Current Coupling Constants to Leptons

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 236 (1990) 109-115, 1990.
Inspire Record 283470 DOI 10.17182/hepdata.29715

We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.

1 data table match query

No description provided.


Measurements of cross-sections and charge asymmetries for $e^+e^- \to \tau^+ \tau^-$ and $e^+e^- \to \mu^+ \mu^-$ for $\sqrt{s}$ from 52 GeV to 57-GeV

The AMY collaboration Bacala, A. ; Malchow, R.L. ; Sparks, K. ; et al.
Phys.Lett.B 218 (1989) 112-118, 1989.
Inspire Record 265797 DOI 10.17182/hepdata.51370

Measurements of the differential cross sections for e + e − →μ + μ − and e + e − →τ + τ − at values of s from 52 to 57 GeV are reported. The forward-backward asymmetries and the total cross sections for these reactions are found to be in agreement with predictions of the standard model of the electro-weak interactions. These measurements are used to extract values of the weak coupling constant g v e g v l and g A e g A l , where l = μ or τ .

3 data tables match query

No description provided.

Weighted average of results from data at 52, 55, 56, and 57 GeV.

Axis error includes +- 5/5 contribution ((C=APPROX)//).


Measurements of b quark forward - backward charge asymmetry and axial vector coupling using inclusive muons in e+ e- annihilation at s**(1/2) = 52-GeV - 61.4-Gev

The TOPAZ collaboration Shimonaka, A. ; Fujii, K. ; Miyamoto, A. ; et al.
Phys.Lett.B 268 (1991) 457-464, 1991.
Inspire Record 319034 DOI 10.17182/hepdata.29343

We have collected 122 multi-hadronic inclusive muon events with the TOPAZ detector at 〈 s 〉 = 58.27 GeV with ∫ L d t=40.61 pb −1 . From this event sample we derived the differential cross section for B-hadron productions and determined B-hadron forward-backward asymmetry (A b b ) to be A b b = −0.71 ± 0.34 ( stat ) +0.07 −0.08 ( syst ) . A fit to the differential cross section, after correcting for the effect of B 0 B 0 mixing, yielded the axial-vector coupling constant of the b-quark ( a b ): a b = −1.79 +0.34 −0.32 (stat) +0.15 −0.14 (syst). We also set a 90% confidence level limit of χ <0.37 on the B 0 B 0 mixing parameter.

1 data table match query

No description provided.


Measurement of charge asymmetry in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 259 (1991) 377-388, 1991.
Inspire Record 314476 DOI 10.17182/hepdata.29453

A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.

1 data table match query

No description provided.


A MEASUREMENT OF THE Z0 LEPTONIC PARTIAL WIDTHS AND THE FORWARD - BACKWARD ASYMMETRY

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
1990.
Inspire Record 294576 DOI 10.17182/hepdata.29691
1 data table match query

No description provided.


Update of electroweak parameters from $Z$ decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 60 (1993) 71-82, 1993.
Inspire Record 354298 DOI 10.17182/hepdata.47312

Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.

3 data tables match query

Data for 1991 running period.

Data for 1991 running period.

Data for 1991 running period.


Measurements of the line shape of the $Z^0$ and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

12 data tables match query

E+ E- forward-backward asymmetries from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

E+ E- forward-backward asymmetries from the 1991 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data). Additional systematic error, excluding luminosity, is 0.002.

E+ E- forward-backward asymmetries from the 1990 data set after t-channel subtraction with only the E- constraint by polar angle 44 to 136 degrees and accollinearity < 10 degrees. Additional systematic error, excluding luminosity, is 0.003 at the peak.

More…

Measurement of electroweak parameters from hadronic and leptonic decays of the $Z^0$

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 51 (1991) 179-204, 1991.
Inspire Record 314418 DOI 10.17182/hepdata.14940

From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).

6 data tables match query

Asymmetry determined from the number of events in the forward and backward hemisphere. Estimated systematic error is 0.005.

Asymmetry determined using the maximum likelihood method. Estimated systematic error is 0.005.

Asymmetry determined from the number of events in the forward and backward hemisphere. Estimated systematic error is <0.01.

More…