Version 2
Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alekseev, M.G. ; et al.
Nucl.Phys.B 886 (2014) 1046-1077, 2014.
Inspire Record 1278730 DOI 10.17182/hepdata.64754

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

17 data tables match query

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of XB. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of Z. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of PT(HADRON). The errors are statistical and systematic.

More…

Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

4 data tables match query

Di-jet A_LL asymmetry vs parton-level invariant mass for the same-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

Theoretical predictions for the di-jet A_LL asymmetry for the same-sign topology using the DSSV14 and NNPDFpol1.1 polarized PDF sets. The DSSV14 prediction is presented without uncertainty while the systematic uncertainty on the NNPDFpol1.1 prediction contains contributions from factorization and renormalization scale uncertainties and PDF uncertainties.

Di-jet A_LL asymmetry vs parton-level invariant mass for the opposite-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

More…

Measurement of the forward-backward asymmetry of $\Lambda$ and $\bar{\Lambda}$ production in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 032002, 2016.
Inspire Record 1404885 DOI 10.17182/hepdata.76972

We study $\Lambda$ and $\bar{\Lambda}$ production asymmetries in $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV. We find an excess of $\Lambda$'s ($\bar{\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\bar{\Lambda}/\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.

2 data tables match query

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ with $p_T > 2.0$ GeV in minimum bias events $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, events $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ in bins of $p_T$ in events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.


Measurement of azimuthal asymmetries in inclusive charged dipion production in $e^+e^-$ annihilations at $\sqrt{s}$ = 3.65 GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 116 (2016) 042001, 2016.
Inspire Record 1384778 DOI 10.17182/hepdata.73802

We present a measurement of the azimuthal asymmetries of two charged pions in the inclusive process $e^+e^-\rightarrow \pi\pi X$ based on a data set of 62 $\rm{pb}^{-1}$ at the center-of-mass energy $\sqrt{s}=3.65$ GeV collected with the BESIII detector. These asymmetries can be attributed to the Collins fragmentation function. We observe a nonzero asymmetry, which increases with increasing pion momentum. As our energy scale is close to that of the existing semi-inclusive deep inelastic scattering experimental data, the measured asymmetries are important inputs for the global analysis of extracting the quark transversity distribution inside the nucleon and are valuable to explore the energy evolution of the spin-dependent fragmentation function.

2 data tables match query

Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each ($z_{1},z_{2}$) and $p_{t}$ bin. The averages $\langle z_i\rangle$, $\langle p_t\rangle$ and $\rm \frac{\langle sin^2\theta_{2}\rangle }{\rm \langle 1+cos^2\theta_{2} \rangle }$ are also given.

Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each ($z_{1},z_{2}$) and $p_{t}$ bin. The averages $\langle z_i\rangle$, $\langle p_t\rangle$ and $\rm \frac{\langle sin^2\theta_{2}\rangle }{\rm \langle 1+cos^2\theta_{2} \rangle }$ are also given.


Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

6 data tables match query

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Measurement of parity-violating spin asymmetries in W$^{\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 051103, 2016.
Inspire Record 1365091 DOI 10.17182/hepdata.73691

We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.

1 data table match query

Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.


Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 072301, 2014.
Inspire Record 1292792 DOI 10.17182/hepdata.73441

We report measurements of single- and double- spin asymmetries for $W^{\pm}$ and $Z/\gamma^*$ boson production in longitudinally polarized $p+p$ collisions at $\sqrt{s} = 510$ GeV by the STAR experiment at RHIC. The asymmetries for $W^{\pm}$ were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the $W$ mass. The results are compared to theoretical predictions, constrained by recent polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range $0.05<x<0.2$.

6 data tables match query

Longitudinal single-spin asymmetry $A_L$ for W+ production as a function of lepton pseudorapidity.

Longitudinal single-spin asymmetry $A_L$ for W- production as a function of lepton pseudorapidity.

Longitudinal single-spin asymmetry $A_L$ for W+ production as a function of lepton pseudorapidity.

More…

Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

4 data tables match query

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for 0.5<|eta|<1.0.

$A_{LL}$ model predictions for |eta|<0.5.

More…

Measurement of the forward-backward asymmetry in $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryon production in $p \overline p$ collisions at $\sqrt s =1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 91 (2015) 072008, 2015.
Inspire Record 1352125 DOI 10.17182/hepdata.73327

We measure the forward-backward asymmetry in the production of $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryons as a function of rapidity in $p \overline p $ collisions at $\sqrt s =1.96$ TeV using $10.4$ fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of $\Lambda_b^0$ or $\overline \Lambda_b^0$ particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity $y$ in the range $0.1<|y|<2$ is $A=0.04 \pm 0.07 {\rm (stat)} \pm 0.02 {\rm (syst)}$.

1 data table match query

Efficiencies $\epsilon$, averaged values of background-subtracted transverse momenta $\left< p_T\right>$, backward and forward fitted yields for the signal $N(B)$ and $N(F)$, forward-backward asymmetries $A$, and cross-section ratios $R$ in four intervals of rapidity. Uncertainties on $\left< p_T\right>$, $N(B)$ and $N(F)$ are statistical only. Uncertainties on $\epsilon$ arise from the statistical precision of the simulated event samples.


Measurement of the transverse single-spin asymmetry in $p^\uparrow+p \to W^{\pm}/Z^0$ at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 132301, 2016.
Inspire Record 1405433 DOI 10.17182/hepdata.73263

We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at $\sqrt{s} = 500~\text{GeV}$ by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse momentum dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the non-universality of the Sivers function, fundamental to our understanding of QCD.

3 data tables match query

The amplitude of the transverse single-spin asymmetry for $W^{+-}$ boson production as a function of $P_T^W$, in the |$y^W$| < 1 region, measured by STAR in proton+proton collisions at $\sqrt{s}=500$ GeV with a recorded luminosity of 25 $pb^{-1}$. The average boson's rapidity value for each $P_T^W$ bin is $y^W=0.0$.

The amplitude of the transverse single-spin asymmetry for $W^{+-}$ boson production as a function of $y^W$, in the 0.5 GeV/c < $P_T^W$ < 10 GeV/c region, measured by STAR in proton+proton collisions at $\sqrt{s}=500$ GeV with a recorded luminosity of 25 $pb^{-1}$. The average boson's transverse-momentum value for each $y^W$-bin is $P_T^W=5.3$ GeV/c.

The amplitude of the transverse single-spin asymmetry for $Z^0$ boson production, measured by STAR in proton+proton collisions at $\sqrt{s}=500$ GeV with a recorded luminosity of 25 $pb^{-1}$.