An improved measurement of the left-right Z0 cross-section asymmetry

The SLD collaboration Abe, K. ; Abt, I. ; Akagi, T. ; et al.
Phys.Rev.Lett. 78 (1997) 2075-2079, 1997.
Inspire Record 426122 DOI 10.17182/hepdata.19583

We present a new measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement was performed at a center-of-mass energy of 91.28 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (77.23+-0.52)%. Using a sample of 93,644 Z decays, we measure the pole-value of the asymmetry, ALR0, to be 0.1512+-0.0042(stat.)+-0.0011(syst.) which is equivalent to an effective weak mixing angle of sin**2(theta_eff)=0.23100+-0.00054(stat.)+-0.00014(syst.).

2 data tables match query

No description provided.

The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exclusive and electroweak interference effects of total-state radiation.


Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

3 data tables match query

The forward-backward charge asymmetry in E+ E- --> MU+ MU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.95 and THETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be greaterthan 6 GeV. Statistical errors only are shown. Also given are the asymmetries a fter correction for the beam energy spread to correspond to the physical asymmetry at the central value of SQRT(S).

The forward-backward charge asymmetry in E+ E- --> TAU+ TAU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.90 andTHETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be great er than 6 GeV. Statistical errors only are shown. Also given are the asymmetriesafter correction for the beam energy spread to correspond to the physical asymm etry at the central value of SQRT(S).

The forward-backward charge asymmetry in E+ E- --> E+ E- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.70 and THETA(C=ACOL) < 10 degrees, and the energy of each fermion required to be greater than 6 GeV. Statistical errors only are shown. Also given are the asymmetries after correction for the beam energy spread to correspond to the physical asymmetryat the central value of SQRT(S).


Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

10 data tables match query

Cross section and forward-backward asymmetry in the E+ E- channel for the 1993 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.46 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0026.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1994 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0021.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1995 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0020.

More…

Measurement and interpretation of fermion pair production at LEP energies from 130-GeV to 172-GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 11 (1999) 383-407, 1999.
Inspire Record 495462 DOI 10.17182/hepdata.34520

None

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the Z0 line shape parameters and the electroweak couplings of charged leptons

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 175-208, 1991.
Inspire Record 315269 DOI 10.17182/hepdata.14859

None

3 data tables match query

Forward-backward asymmetry calculated from number of events from combined 1989 and 1990 data.

Forward-backward asymmetry resulted from a maximum-likelihood fit to the COS(THETA) distribution from combined 1989 and 1990 data.

Forward-backward asymmetry resulted from a maximum-likelihood fit to the COS(THETA) distribution from combined 1989 and 1990 data.


Precision measurements of the neutral current from hadron and lepton production at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 58 (1993) 219-238, 1993.
Inspire Record 352696 DOI 10.17182/hepdata.14495

New measurements of the hadronic and leptonic cross sections and of the leptonic forward-backward asymmetries ine+e− collisions are presented. The analysis includes data recorded up to the end of 1991 by the OPAL experiment at LEP, with centre-of-mass energies within ±3 GeV of the Z0 mass. The results are based on a recorded total of 454 000 hadronic and 58 000 leptonic events. A model independent analysis of Z0 parameters based on an extension of the improved Born approximation is presented leading to test of lepton universality and an interpretation of the results within the Standard Model framework. The determination of the mass and width of the Z0 benefit from an improved understanding of the LEP energy calibration.

5 data tables match query

Additional systematic error of 0.003.

Forward-backward asymmetry from counting number of events. Additional systematic error of 0.003.

Forward-backward asymmetry from maximum likelihood fit to cos(theta) distribution. Additional systematic error of 0.003.

More…

Improved measurements of cross-sections and asymmetries at the Z0 resonance

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 418 (1994) 403-427, 1994.
Inspire Record 373114 DOI 10.17182/hepdata.48349

During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.

4 data tables match query

Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.

No description provided.

No description provided.

More…

DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

2 data tables match query

Asymmetries. Systematic error is 1 pct.

Asymmetries. Systematic error is 1 pct.


Measurement and Interpretation of Fermion-Pair Production at LEP Energies of 183 and 189 GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 485 (2000) 45-61, 2000.
Inspire Record 529847 DOI 10.17182/hepdata.49937

An analysis of the data collected in 1997 and 1998 with the DELPHI detector at e+e- collision energies close to 183 and 189 GeV was performed in order to extract the hadronic and leptonic fermion-pair cross-sections, as well as the leptonic forward-backward asymmetries and angular distributions. The data are used to put limit on contact interactions between fermions, the exchange of R-parity violating SUSY sneutrinos, Z' bosons and the existence of gravity in extra dimensions.

2 data tables match query

No description provided.

No description provided.


Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

5 data tables match query

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Measured cross sections and forward-backward asymmetries for inclusive E+ E- --> MU+ MU- events.

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> MU+ MU- events.

More…

Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

12 data tables match query

E+ E- forward-backward asymmetries from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

E+ E- forward-backward asymmetries from the 1991 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data). Additional systematic error, excluding luminosity, is 0.002.

E+ E- forward-backward asymmetries from the 1990 data set after t-channel subtraction with only the E- constraint by polar angle 44 to 136 degrees and accollinearity < 10 degrees. Additional systematic error, excluding luminosity, is 0.003 at the peak.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 130-GeV to 172-GeV at LEP

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 2 (1998) 441-472, 1998.
Inspire Record 447186 DOI 10.17182/hepdata.47404

Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.

4 data tables match query

Errors include statistical and systematic effects combined, with the formerdominant.

ASYM(C=MEAS) and ASYM(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.

ASYM(C=MEAS) and ASYM(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.

More…

A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

1 data table match query

Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

8 data tables match query

Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error is 0.005 not included.

Forward-backward asymmetry after t-channel subtraction but in the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error is 0.005 not included.

Forward-backward asymmetry calculated using the counting method. Data are corrected for full solid angle, but not for cuts on momenta or acollinearity.. Additional systematic error is 0.005.

More…

Measurements of the W boson rapidity, helicity, double-differential cross sections, and charge asymmetry in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 092012, 2020.
Inspire Record 1810913 DOI 10.17182/hepdata.94180

The differential cross section and charge asymmetry for inclusive W boson production at $\sqrt{s} =$ 13 TeV is measured for the two transverse polarization states as a function of the W boson absolute rapidity. The measurement uses events in which a W boson decays to a neutrino and either a muon or an electron. The data sample of proton-proton collisions recorded with the CMS detector at the LHC in 2016 corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross section and its value normalized to the total inclusive W boson production cross section are measured over the rapidity range $|y_\mathrm{W}|$ $\lt$ 2.5. In addition to the total fiducial cross section, the W boson double-differential cross section, d$^2\sigma$/d$p^\ell_\mathrm{T}$d$|\eta|$ and the charge asymmetry are measured as functions of the charged lepton transverse momentum and pseudorapidity. The precision of these measurements is used to constrain the parton distribution functions of the proton using the next-to-leading order NNPDF3.0 set.

6 data tables match query

Measured charge asymmetry from the helicity fit for combination of muon and electron channel

Measured charge asymmetry from the helicity fit for combination of muon and electron channel

Measured charge asymmetry from the helicity fit for combination of muon and electron channel

More…