Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

1 data table match query

Forward-backward asymmetry from full angular range.


Charge Asymmetry and Weak Interaction Effects in $e^+ e^- \to \mu^+ \mu^-$ and $e^+ e^- \to \tau^+ \tau^-$

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 110 (1982) 173-180, 1982.
Inspire Record 176719 DOI 10.17182/hepdata.6699

We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.

1 data table match query

No description provided.


A Determination of electroweak parameters from Z0 ---> mu+ mu- (gamma)

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 247 (1990) 473-480, 1990.
Inspire Record 297172 DOI 10.17182/hepdata.29622

We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.

1 data table match query

Forward backward charge asymmetry.


New Results on the Reaction $e^+ e^- \to \mu^+ \mu^-$ at $\sqrt{s}=29$-{GeV}

Derrick, M. ; Fernandez, E. ; Fries, R. ; et al.
Phys.Rev.D 31 (1985) 2352, 1985.
Inspire Record 212767 DOI 10.17182/hepdata.3935

We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.

1 data table match query

Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.


Measurement of $e^+ e^- \to \mu^+ \mu^-$: A Test of Electroweak Theories

The Mark-J collaboration Adeva, B. ; Becker, U. ; Becker-Szendy, R. ; et al.
Phys.Rev.Lett. 55 (1985) 665, 1985.
Inspire Record 214607 DOI 10.17182/hepdata.3237

We use the reaction e+e−→μ+μ−, in the Mark J detector at the DESY high-energy e+e− collider PETRA, to test the standard electroweak theory and find good agreement. We also set limits on the parameters of several extended gauge theories.

1 data table match query

No description provided.


Experimental study of b quark jets in e+ e- annihilation at TRISTAN

The TOPAZ collaboration Nagai, K. ; Enomoto, R. ; Abe, T. ; et al.
Phys.Lett.B 278 (1992) 506-510, 1992.
Inspire Record 333342 DOI 10.17182/hepdata.29230

An experimental study of b-quark jets using high- p T electrons was carried out at √ s =58 GeV with the TOPAZ detector at the e + e − collider TRISTAN at KEK. The forward-backward charge asymmetry of the b-quark was obtained to be A b b ̄ =−0.55±0.27( stat. )±0.07( syst. ) , consistent with the standard model prediction. Also, such jet properties of the b-quark as the average charged multiplicity and the rapidity of charged particles were analyzed. In order to purify the b-quark event samples in this analysis, only events with backward-going electrons or forward-going positrons were used. The energy dependence of these jet properties was studied by making comparisons with the results of the DELCO experiment at the PEP collider (√ s =29 GeV) at SLAC.

1 data table match query

No description provided.


Tests of the Standard Model in Leptonic Reactions at {PETRA} Energies

The JADE collaboration Bartel, W. ; Becker, L. ; Cords, D. ; et al.
Z.Phys.C 30 (1986) 371, 1986.
Inspire Record 222566 DOI 10.17182/hepdata.48419

An analysis of the three leptonic reactionse+e−→e+e−,μ+μ− andτ+τ− over a wide range of energy,\(12< \sqrt s< 46.78 GeV\) is presented. The data were obtained with the JADE detector at thee+e− storage ring PETRA. They are compared to predictions of electroweak theories, in particular the standard model. For the total cross-sections of all three reactions and for the differential cross-section of Bhabha scattering no deviation from QED is found over the entire energy range. The differential cross-sections of μ and τ pairs at high energies show the angular asymmetry predicted by electroweak interference. The axial-vector and vector weak coupling constant, sin2θW andMZ are determined and compared to other measurements. Finally, limits on deviations from the standard model are given.

6 data tables match query

Forward-Backward Asymmetry measurements.

Forward-Backward Asymmetry measurements.

No description provided.

More…

Production Cross-section and Electroweak Asymmetry of $D^*$ and $D$ Mesons Produced in $e^+ e^-$ Annihilations at 29-{GeV}

Baringer, Philip S. ; Bylsma, B.G. ; DeBonte, R. ; et al.
Phys.Lett.B 206 (1988) 551-556, 1988.
Inspire Record 23360 DOI 10.17182/hepdata.6192

The production of D * and D mesons has been studied in e + e − annihilations at √s = 29GeV. The data, corresponding to an integrated luminosity of 300 pb −1 , were obtained using the HRS detector at PEP. The cross section is measured to be R (D 0 + D + ) = 2.40±0.35 and we determine the electroweak asymmetry to be −9.9 ± 2.7%, which corresponds to an axial vector coupling constant product g e g c = 0.26 ± 0.07.

1 data table match query

No description provided.