Search for a Z-prime at the Z resonance

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S.P. ; et al.
Phys.Lett.B 306 (1993) 187-196, 1993.
Inspire Record 355489 DOI 10.17182/hepdata.28919

The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,

2 data tables match query

Data taken during 1990.

Data taken during 1991.


Measurement of muon pair production at 50-GeV < s**(1/2) < 86-GeV at LEP

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 374 (1996) 331-340, 1996.
Inspire Record 416744 DOI 10.17182/hepdata.47586

Using the data recorded with the L3 detector at LEP, we study the process e + e − → μ + μ − ( γ ) for events with hard initial-state photon radiation. The effective centre-of-mass energies of the muons range from 50 GeV to 86 GeV. The data sample corresponds to an integrated luminosity of 103.5 pb −1 and yields 293 muon-pair events with a hard photon along the beam direction. The events are used to determine the cross sections and the forward-backward charge asymmetries at centre-of-mass energies below the Z resonance.

2 data tables match query

Forward-Backward Asymmetry from fit as function of the reduced centre-of-mass energy.

Background corrected Forward-Backward Asymmetry as function of the reduced centre-of-mass energy.


Measurement of the muon charge asymmetry in ppbar to W + X to mu nu + X events at sqrt{s} = 1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 091102, 2013.
Inspire Record 1253555 DOI 10.17182/hepdata.66280

We present a measurement of the muon charge asymmetry from the decay of the $W$ boson via W to mu nu using 7.3 fb^{-1} of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider at sqrt{s} = 1.96 TeV. The muon charge asymmetry is presented in two kinematic regions in muon transverse momentum and event missing transverse energy: (p^{\mu}_{T} > 25 GeV, \met > 25 GeV) and (p^{\mu}_{T} > 35 GeV, \met > 35 GeV). The measured asymmetries are compared with theory predictions made using three parton distribution function sets. The predictions do not describe the data well for p^{\mu}_{T} > 35 GeV, \met > 35 GeV, and larger values of muon pseudorapidity.

2 data tables match query

Muon charge asymmetry for data and predictions from RESBOS+PHOTOS using the CTEQ6.6 PDFs. The measurement is shown with statistical uncertainties followed by systematic uncertainties. The uncertainties for the predictions are only from the PDFs.

Contributions from individual sources of systematic uncertainty for the ($p^{\mu}_{T} > 25$, $E_T^{missing} > 25$) GeV kinematic region. All uncertainty values are multiplied by 100. The columns (1-7) correspond to: 1.0 = Electro-Weak background 2.0 = Multi-Jet background 3.0 = Charge mis-identification 4.0 = Relative charge efficiency 5.0 = Magnet polarity weighting 6.0 = Momentum/$E_T^{missing}$ resolution 7.0 = Trigger isolation.


Measurement of the inclusive leptonic asymmetry in top-quark pairs that decay to two charged leptons at CDF

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.Lett. 113 (2014) 042001, 2014.
Inspire Record 1290358 DOI 10.17182/hepdata.64422

We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab. With an integrated luminosity of 9.1 $\rm{fb}^{-1}$, the leptonic forward-backward asymmetry, $A_{\text{FB}}^{\ell}$, is measured to be $0.072 \pm 0.060$ and the leptonic pair forward-backward asymmetry, $A_{\text{FB}}^{\ell\ell}$, is measured to be $0.076 \pm 0.082$, compared with the standard model predictions of $A_{\text{FB}}^{\ell} = 0.038 \pm 0.003$ and $A_{\text{FB}}^{\ell\ell} = 0.048 \pm 0.004$, respectively. Additionally, we combine the $A_{\text{FB}}^{\ell}$ result with a previous determination from a final state with a single lepton and hadronic jets and obtain $A_{\text{FB}}^{\ell} = 0.090^{+0.028}_{-0.026}$.

3 data tables match query

The leptonic forward-backward asymmetry.

The leptonic pair forward-backward asymmetry.

The leptonic forward-backward asymmetry calculated as the combination of the current asymmetry measurement and a previous CDF measurement.


Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

3 data tables match query

The forward-backward charge asymmetry in E+ E- --> MU+ MU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.95 and THETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be greaterthan 6 GeV. Statistical errors only are shown. Also given are the asymmetries a fter correction for the beam energy spread to correspond to the physical asymmetry at the central value of SQRT(S).

The forward-backward charge asymmetry in E+ E- --> TAU+ TAU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.90 andTHETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be great er than 6 GeV. Statistical errors only are shown. Also given are the asymmetriesafter correction for the beam energy spread to correspond to the physical asymm etry at the central value of SQRT(S).

The forward-backward charge asymmetry in E+ E- --> E+ E- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.70 and THETA(C=ACOL) < 10 degrees, and the energy of each fermion required to be greater than 6 GeV. Statistical errors only are shown. Also given are the asymmetries after correction for the beam energy spread to correspond to the physical asymmetryat the central value of SQRT(S).


Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

10 data tables match query

Cross section and forward-backward asymmetry in the E+ E- channel for the 1993 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.46 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0026.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1994 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0021.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1995 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0020.

More…

Precise measurement of the e+ e- ---> mu+ mu- reaction at s**(1/2) = 57.77-GeV

The VENUS collaboration Miura, M. ; Odaka, S. ; Arima, T. ; et al.
Phys.Rev.D 57 (1998) 5345-5362, 1998.
Inspire Record 452097 DOI 10.17182/hepdata.27142

The reaction e+e−→μ+μ− has been measured at s=57.77GeV, based on 289.6±2.6 pb−1 data collected with the VENUS detector at TRISTAN. The production cross section is measured in bins of the production angle within an angular acceptance of |cosθ|<~0.75, according to a model-independent definition. The result is consistent with the prediction of the standard electroweak theory. Although a trend in measurements at lower energies that the total cross section tends to be smaller than the prediction remains, the discrepancy is not significant. The model-independent result is converted to the differential cross section in the effective-Born scheme by unfolding photon-radiation effects. This result can be extrapolated to quantities for the full solid angle as σtotEB=30.05±0.59 pb and AFBEB=−0.350±0.017, by imposing an ordinary assumption on the production-angle dependence. The converted results are used to set constraints on extensions of the standard theory. S-matrix parametrization, and possible contributions from contact interactions and heavy neutral-scalar exchanges are examined.

1 data table match query

Total cross section and forward backward asymmetry results in the effective-Born scheme.


An improved direct measurement of leptonic coupling asymmetries with polarized Z bosons.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.Lett. 86 (2001) 1162-1166, 2001.
Inspire Record 534735 DOI 10.17182/hepdata.41720

We present final measurements of the Z boson-lepton coupling asymmetry parameters Ae, Amu, and Atau with the complete sample of polarized Z bosons collected by the SLD detector at the SLAC Linear Collider. From the left-right production and decay polar angle asymmetries in leptonic Z decays we measure Ae = 0.1544 +- 0.0060, Amu = 0.142 +- 0.015, and Atau = 0.136 +- 0.015. Combined with our left-right asymmetry measured from hadronic decays, we find Ae = 0.1516 +- 0.0021. Assuming lepton universality, we obtain a combined effective weak mixing angle of sin**2 theta^{eff}_W = 0.23098 +- 0.00026.

1 data table match query

No description provided.


Measurement and interpretation of fermion pair production at LEP energies from 130-GeV to 172-GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 11 (1999) 383-407, 1999.
Inspire Record 495462 DOI 10.17182/hepdata.34520

None

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of the $e^+ e^-\to\mu^+ \mu^- \gamma$ reaction at center-of-mass energies between 54 and 64 GeV

The VENUS collaboration Yonezawa, Y. ; Abe, K. ; Amako, K. ; et al.
Phys.Lett.B 264 (1991) 212-218, 1991.
Inspire Record 1389624 DOI 10.17182/hepdata.29359

The cross section and forward-backward muon charge asymmetry for the e + e − → μ + μ − γ reaction were measured to be σ =2.82±0.35 pb and A =−0.34±0.10 with the VENUS detector at TRISTAN at 〈√ s 〉=59.2GeV for an integrated luminosity of 53.5 pb −1 . The measured cross section agrees with the theoretical prediction. The asymmetry result is consistent with the electroweak prediction but not with the QED prediction at the level of 2 σ .

1 data table match query

No description provided.