Using linearly polarized tagged photons from coherent bremsstrahlung, differential cross sections and beam asymmetries for Compton scattering by 4 He have been measured at MAMI in the energy interval between 150 MeV and 500 MeV for scattering angles of θ γ lab =37°, 93° and 137°, thus largely increasing the available data base. Improved calculations in terms of the Δ -hole model completely fail to describe the data at large scattering angles. The same proved to be true for a schematic model, even after taking into account properties of nuclear photo-absorption in very detail.
Axis error includes +- 0.0/0.0 contribution.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
We have measured the properties of Z 0 → b b decays using a sample of 944 inclusive muon events, corresponding to 18 000 hadron events obtained with the L3 detector at LEP. We measured the partial decay width of the Z 0 into b b , Γ b b =353±48 MeV , and we determined the vector coupling of the Z 0 to the b quark; g rmv 2 (b)=0.095±0.047. We measured the forward-backward charge asymmetry in e + e − → b b events at √ s ≈ M v , and obtained A b b =13.3±9.9% .
BOTTOM quark charge asymmetry measurement.
We report measurements of the asymmetry A_parallel for inclusive hadron production on longitudinally polarized proton and deuteron targets by circularly polarized photons. The photons were produced via internal and external bremsstrahlung from an electron beam of 48.35 GeV. Asymmetries for both positive and negative signed hadrons, and a subset of identified pions, were measured in the momentum range 10<P<30 GeV at 2.75 and 5.5 degrees. Small non-zero asymmetries are observed for the proton, while the deuteron results are consistent with zero. Recent calculations do not describe the data well.
The asymmetry for polarized photoproduction of inclusive hadrons from a polarized proton target. The errors are statistical only.
The asymmetry for polarized photoproduction of inclusive identified pions from a polarized proton target. The errors are statistical only.
The asymmetry for polarized photoproduction of inclusive hadrons from a polarized deuteron target. The errors are statistical only.
We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at $\langle \sqrt{s} \rangle$=58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb$~{-1}$ taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are $A_{FB}~c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.)$ and $A_{FB}~b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.)$, which are consistent with the standard model predictions.
No description provided.
The production of electrons by bottom and charm hadrons has been studied in e + e − annihilation at 34.6 GeV center of mass energy. It is observed that the b quark fragmentation function is peaked at large values of the scaling variable z with 〈 z b 〉 = 0.84 +0.15 + 0.15 −0.10 − 0.11 . For c quarks 〈 z c 〉 = 0.57 +0.10 + 0.05 −0.09 − 0.06 is observed. A forward-backward charge asymmetry of A = −0.25 ± 0.22 was measured in b production.
THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.
THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT ELECTRONS.
High p ⊥ inclusive muon events produced in e + e − annihilations at √ s =29 GeV have been analyzed to obtain a measurement of the b b forward-backward charge asymmetry. The result A b =0.034±0.070±0.035 differs from the theoretical expectation (−0.16) unless substantial B 0 B 0 mixing is assumed.
No description provided.
We have measured the forward-backward charge asymmetry in the process of b-quark production in e + e − annihilation at TRISTAN. It was made possible by detecting prompt leptons from b-quarks. The obtained asymmetry is A = −0.55±0.15±0.08. If corrected for B-meson mixing effects with the assumptions given in the text, the asymmetry becomes A = f −0.78±0.21±0.11, which is consistent with the prediction of the standard model, namely the assignment of the b-quark to the isospin doublet of the third quark generation.
Data uncorrected for meson mixing effects.
Data corrected for meson mixing effects.
Measurements of the forward-backward asymmetry of e + e − → cc events were carried out at a mean √s energy of 57.95 GeV at TRISTAN, KEK. The cc events were tagged either by the full-reconstruction of D ∗± or the inclusive P T spectrum of π s ± from D ∗± → D 0 ( D 0 )π s ± . The forward-backward asymmetry was measured to be A FB c = −0.49 −0.13 +0.14 (stat.) ± 0.06 (syst.), consistent with the standard model.
No description provided.
We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.
Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.