Measurement of the forward - backward asymmetry of e+ e- ---> Z ---> b anti-b using prompt leptons and a lifetime tag

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 65 (1995) 569-586, 1995.
Inspire Record 382035 DOI 10.17182/hepdata.48318

The forward-backward asymmetry of the processe+e−→Z→b

2 data tables match query

No description provided.

No description provided.


A measurement of the charm and bottom forward-backward asymmetries using D mesons at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 379-395, 1997.
Inspire Record 421995 DOI 10.17182/hepdata.47946

A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.

1 data table match query

Forward-backward asymmetry.


The Forward - backward asymmetry for charm quarks at the Z pole

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 352 (1995) 479-486, 1995.
Inspire Record 394753 DOI 10.17182/hepdata.47932

From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.

2 data tables match query

Value of SIN2TW(eff) from CQ-quark asymmetries.

No description provided.


The forward-backward asymmetry for charm quarks at the Z.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 434 (1998) 415-425, 1998.
Inspire Record 472954 DOI 10.17182/hepdata.49353

The data set collected with the ALEPH detector from 1991 to 1995 at LEP has been analysed to measure the charm forward-backward asymmetry at the Z. Out of a total of 4.1 million hadronic Z decays, about 36000 high momentum D*+, D+ and D0 decays were reconstructed, of which 80% originate from Z -> ccbar events...

1 data table match query

No description provided.


Determination of A(b)(FB) using jet charge measurements in Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 426 (1998) 217-230, 1998.
Inspire Record 468671 DOI 10.17182/hepdata.49559

An improved measurement of the forward-backward asymmetry in Z →b b ̄ decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b -jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at s =m Z is determined to be: A b FB =0.1017±0.0038(stat.)±0.0032(syst.). In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of sin 2 θ W eff =0.23109±0.00096.

2 data tables match query

Only statistical errors are given for sqrt(s) = 89.43 and 92.97 GeV.

The combination of the data on and off peak of Z-boson.


Precision neutral current asymmetry parameter measurements from the tau polarization at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 21 (2001) 1-21, 2001.
Inspire Record 554583 DOI 10.17182/hepdata.49765

Measurements of the tau lepton polarization and forward-backward polarization asymmetry near the Z resonance using the OPAL detector are described. The measurements are based on analyses of tau -> e nu_e nu_tau, tau -> mu nu_mu nu_tau, tau -> pi nu_tau, tau -> rho nu_tau and tau -> a1 nu_tau decays from a sample of 144810 e+e- -> tau+ tau- candidates corresponding to an integrated luminosity of 151 pb-1. Assuming that the tau lepton decays according to V-A theory, we measure the average tau polarization near Ecm = MZ to be <Ptau> = (-14.10 +/- 0.73 +/- 0.55)% and the tau polarization forward-backward asymmetry to be Afb = (-10.55 +/- 0.76 +/- 0.25)%, where the first error is statistical and the second systematic. Taking into account the small effects of the photon propagator, photon-Z interference and photonic radiative corrections, these results can be expressed in terms of the lepton neutral current asymmetry parameters: Atau = 0.1456 +/- 0.0076 +/- 0.0057, Ae = 0.1454 +/- 0.0108 +/- 0.0036. These measurements are consistent with the hypothesis of lepton universality and combine to give Al = 0.1455 +/- 0.0073. Within the context of the Standard Model this combined result corresponds to sin^2(theta)(lept,effective) = 0.23172 +/- 0.00092. Combing these results with those from the other OPAL neutral current measurements yields a value of sin^2(theta)(lept,effective) = 0.23211 +/- 0.00068.

1 data table match query

No description provided.


Precise Measurement of the Left-Right Cross Section Asymmetry in $Z$ Boson Production by $\ee$ Collisions

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.Lett. 73 (1994) 25-29, 1994.
Inspire Record 373007 DOI 10.17182/hepdata.19681

We present a precise measurement of the left-right cross section asymmetry ($A_{LR}$) for $Z$ boson production by $\ee$ collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0$\pm$1.1)%. Using a sample of 49,392 $\z0$ decays, we measure $A_{LR}$ to be 0.1628$\pm$0.0071(stat.)$\pm$0.0028(syst.) which determines the effective weak mixing angle to be $\swein=0.2292\pm0.0009({\rm stat.})\pm0.0004({\rm syst.})$.}

2 data tables match query

The observed, corrected, asymmetry. L and R refer to the left and right handed beam polarizations.

The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exchange and electro weak interferences. L and R refer to left and right beam polarizations.


First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

1 data table match query

R and L refer to Right and Left handed beam polarization.


An improved measurement of the left-right Z0 cross-section asymmetry

The SLD collaboration Abe, K. ; Abt, I. ; Akagi, T. ; et al.
Phys.Rev.Lett. 78 (1997) 2075-2079, 1997.
Inspire Record 426122 DOI 10.17182/hepdata.19583

We present a new measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement was performed at a center-of-mass energy of 91.28 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (77.23+-0.52)%. Using a sample of 93,644 Z decays, we measure the pole-value of the asymmetry, ALR0, to be 0.1512+-0.0042(stat.)+-0.0011(syst.) which is equivalent to an effective weak mixing angle of sin**2(theta_eff)=0.23100+-0.00054(stat.)+-0.00014(syst.).

2 data tables match query

No description provided.

The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exclusive and electroweak interference effects of total-state radiation.


A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

1 data table match query

Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.