A Determination of electroweak parameters from Z0 ---> mu+ mu- (gamma)

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 247 (1990) 473-480, 1990.
Inspire Record 297172 DOI 10.17182/hepdata.29622

We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.

1 data table match query

Forward backward charge asymmetry.


A Determination of sin**2-theta from the forward - backward asymmetry in p anti-p ---> Z0 X ---> e+ e- X interactions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 67 (1991) 1502-1506, 1991.
Inspire Record 317764 DOI 10.17182/hepdata.19899

An analysis of the forward-backward asymmetry in Z0 decays using data from the Collider Detector at Fermilab at √s =1.8 TeV yields AFB=[5.2±5.9(stat)±0.4(syst)]% and sin2θ¯W =0.228−0.015+0.017(stat)±0.002(syst).

1 data table match query

Asymmetry after background and QCD corrections.


A Measurement of the Z0 ---> b anti-b forward - backward asymmetry

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 252 (1990) 713-721, 1990.
Inspire Record 301901 DOI 10.17182/hepdata.29506

We have measured the forward-backward asymmetry in Z 0 → b b decays using hadronic events containing muons and electrons. The data sample corresponds to 118 200 hadronic events at √ s ≈ M z . From a fit to the single and dilepton p and P ⊥ spectra, we determine A b b =0.130 −0.042 +0.044 including the correction for B 0 − B 0 mixing.

2 data tables match query

Observed asymmetry from fit to single and dilepton P and PT spectra assuming no mixing.

Asymmetry corrected for the effects of mixing using the L3 observed mixing parameter chi(B) = 0.178 +0.049,-0.040.


Determination of A(b)(FB) using jet charge measurements in Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 426 (1998) 217-230, 1998.
Inspire Record 468671 DOI 10.17182/hepdata.49559

An improved measurement of the forward-backward asymmetry in Z →b b ̄ decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b -jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at s =m Z is determined to be: A b FB =0.1017±0.0038(stat.)±0.0032(syst.). In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of sin 2 θ W eff =0.23109±0.00096.

2 data tables match query

Only statistical errors are given for sqrt(s) = 89.43 and 92.97 GeV.

The combination of the data on and off peak of Z-boson.


Electroweak studies in e+ e- collisions: 12 < s**(1/2) < 46.78 GeV

The MARK J collaboration Adeva, B. ; Anderhub, H. ; Ansari, S. ; et al.
Phys.Rev.D 38 (1988) 2665-2678, 1988.
Inspire Record 274887 DOI 10.17182/hepdata.23272

The Mark J Collaboration at the DESY e+e− collider PETRA presents results on the electroweak reactions e+e−→μ+μ−τ+τ−,μ+μ−γ, and e+e−μ+μ−. The c.m. energy range is 12 to 46.78 GeV. In the μ+μ− and τ+τ− channels the total cross sections and the forward-backward asymmetries are reported and compared with other experiments. The results are in excellent agreement with the standard model. The weak-neutral-current vector and axial-vector coupling constants are determined. The values for muons and τ’s are compatible with universality and with the predictions of the standard model. In the μ+μ−γ channel, all measured distributions, including the forward-backward muon asymmetry, are in excellent agreement with the electroweak theory. Our data on the two-photon process, e+e−μ+μ−, agrees with QED to order α4 over the entire energy range and the Q2 range from 0.7 to 166 GeV2.

2 data tables match query

No description provided.

No description provided.


Experimental Study of Electroweak Parameters at {PETRA} Energies (12-{GeV} $< E_{CMS} <$ 36.7-{GeV})

The MARK-J collaboration Barber, D.P. ; Becker, U. ; Bei, G.D. ; et al.
Phys.Rev.Lett. 46 (1981) 1663, 1981.
Inspire Record 164675 DOI 10.17182/hepdata.3303

We have performed a high-statistics measurement of Bhabha scattering and of the production of hadrons in electron-positron annihilation at PETRA energies (12 GeV<~s<~36.7 GeV). Combining the results with measurements of μ+μ− and τ+τ− production enables us to compare our results with electroweak theory. We find sin2θw=0.27±0.08. This is in good agreement with the value obtained from neutrino experiments which were carried out in entirely different kinematic regions.

1 data table match query

No description provided.


First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

1 data table match query

R and L refer to Right and Left handed beam polarization.


Improved measurements of electroweak parameters from Z decays into fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 53 (1992) 1-20, 1992.
Inspire Record 317141 DOI 10.17182/hepdata.14857

The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Indirect measurement of $\sin^2 \theta_W$ (or $M_W$) using $\mu^+\mu^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 89 (2014) 072005, 2014.
Inspire Record 1280719 DOI 10.17182/hepdata.64738

Drell-Yan lepton pairs are produced in the process $p\bar{p} \rightarrow \mu^+\mu^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $\mu^-$ as a function of the invariant mass of the $\mu^+\mu^-$ pair is used to obtain the effective leptonic determination $\sin^2 \theta^{lept}_{eff}$ of the electroweak-mixing parameter $\sin^2 \theta_W$, from which the value of $\sin^2 \theta_W$ is derived assuming the standard model. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.2 fb-1 of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2 \theta^{lept}_{eff}$ is found to be 0.2315 +- 0.0010, where statistical and systematic uncertainties are combined in quadrature. When interpreted within the context of the standard model using the on-shell renormalization scheme, where $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$, the measurement yields $\sin^2 \theta_W$ = 0.2233 +- 0.0009, or equivalently a W-boson mass of 80.365 +- 0.047 GeV/c^2. The value of the W-boson mass is in agreement with previous determinations in electron-positron collisions and at the Tevatron collider.

1 data table match query

The fully corrected measurement of ASYM(FB) as a function of the muon-pair invariant mass.


Measurement of $\sin^2\theta^{\rm lept}_{\rm eff}$ using $e^+e^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112016, 2016.
Inspire Record 1456804 DOI 10.17182/hepdata.78542

At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.

1 data table match query

Fully corrected $A_{fb}$ measurement for electron pairs with $|y|<1.7$. The measurement uncertainties are bin-by-bin unfolding estimates.