We have measured the forward-backward charge asymmetry in the process of b-quark production in e + e − annihilation at TRISTAN. It was made possible by detecting prompt leptons from b-quarks. The obtained asymmetry is A = −0.55±0.15±0.08. If corrected for B-meson mixing effects with the assumptions given in the text, the asymmetry becomes A = f −0.78±0.21±0.11, which is consistent with the prediction of the standard model, namely the assignment of the b-quark to the isospin doublet of the third quark generation.
We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at $\langle \sqrt{s} \rangle$=58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb$~{-1}$ taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are $A_{FB}~c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.)$ and $A_{FB}~b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.)$, which are consistent with the standard model predictions.
The production of electrons by bottom and charm hadrons has been studied in e + e − annihilation at 34.6 GeV center of mass energy. It is observed that the b quark fragmentation function is peaked at large values of the scaling variable z with 〈 z b 〉 = 0.84 +0.15 + 0.15 −0.10 − 0.11 . For c quarks 〈 z c 〉 = 0.57 +0.10 + 0.05 −0.09 − 0.06 is observed. A forward-backward charge asymmetry of A = −0.25 ± 0.22 was measured in b production.
The production of the neutral strange hadrons $K^{0}_{S}$, $\Lambda$ and $\bar{\Lambda}$ has been measured in $ep$ collisions at HERA using the ZEUS detector. Cross sections, baryon-to-meson ratios, relative yields of strange and charged light hadrons, $\Lambda$ ($\bar{\Lambda}$) asymmetry and polarization have been measured in three kinematic regions: $Q^2 > 25 \gev^2$: $5 < Q^2 < 25 \gev^2$: and in photoproduction ($Q^2 \simeq 0$). In photoproduction the presence of two hadronic jets, each with at least $5 \gev$ transverse energy, was required. The measurements agree in general with Monte Carlo models and are consistent with measurements made at $e^+ e^-$ colliders, except for an enhancement of baryon relative to meson production in photoproduction.
We present a direct measurement of the parity-violation parameter $A_c$ in the coupling of the $Z^0$ to $c$-quarks with the SLD detector. The measurement is based on a sample of 530k hadronic $Z^0$ decays, produced with a mean electron-beam polarization of $|P_e| = 73 %$. The tagging of $c$-quark events is performed using two methods: the exclusive reconstruction of $D^{\ast+}$, $D^+$, and $D^0$ mesons, and the soft-pions ($\pi_s$) produced in the decay of $D^{\ast+}\to D^0 \pi_s^+$. The large background from $D$ mesons produced in $B$ hadron decays is separated efficiently from the signal using precision vertex information. The combination of these two methods yields $A_c = 0.688 \pm 0.041.$
Using data from Fermilab fixed-target experiment E791, we have measured particle-antiparticle production asymmetries for lambda zero, cascade minus, and omega minus hyperons in pi minus-nucleon interactions at 500 GeV/c. The asymmetries are measured as functions of Feynman-x (x_F) and pt^2 over the ranges of -0.12 GE x_F LE 0.12 and 0 GE pt^2 LE 4 (GeV/c)^2. We find substantial asymmetries, even at x_F = 0. We also observe leading-particle- type asymmetries which qualitatively agree with theoretical predictions.
Using data from Fermilab fixed-target experiment E769, we have measured particle-antiparticle production asymmetries for Lambda0 hyperons in 250 GeV/c pi+-, K+- and p -- nucleon interactions. The asymmetries are measured as functions of Feynman-x (x_F) and p_t^2 over the ranges -0.12<=x_F<=0.12 and 0<=p_t^2<=3 (GeV/c)^2 (for positive beam) and -0.12<=x_F<=0.4 and 0<=p_t^2<=10 (GeV/c)^2 (for negative beam). We find substantial asymmetries, even at x_F around zero. We also observe leading-particle-type asymmetries. These latter effects are qualitatively as expected from valence-quark content of the target and variety of projectiles studied.
A measurement of the forward--backward asymmetry of $e^{+}e^{-} \to c\bar{c}$ and $e^{+}e^{-} \to b\bar{b}$ on the $Z$ resonance is performed using about 3.5 million hadronic $Z$ decays collected by the DELPHI detector at LEP in the years 1992 to 1995. The heavy quark is tagged by the exclusive reconstruction of several $D$ meson decay modes. The forward--backward asymmetries for $c$ and $b$ quarks at the $Z$ resonance are determined to be: \[ \renewcommand{\arraystretch}{1.6} \begin{array}{rcr@{}l} \Afbc(\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0659 \pm 0.0094 (stat) \pm 0.0035 (syst) \Afbb (\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0762 \pm 0.0194 (stat) \pm 0.0085 (syst) \Afbc(\sqrt{s} = 89.434 {\rm GeV}) &=&-&0.0496 \pm 0.0368 (stat) \pm 0.0053 (syst) \Afbb(\sqrt{s} = 89.434 {\rm GeV}) &=& &0.0567 \pm 0.0756 (stat) \pm 0.0117 (syst) \Afbc(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.1180 \pm 0.0318 (stat) \pm 0.0062 (syst) \Afbb(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.0882 \pm 0.0633 (stat) \pm 0.0122 (syst) \end{array} \] The combination of these results leads to an effective electroweak mixing angle of: SINEFF = 0.2332 \pm 0.0016
The charmed quark charge asymmetry has been measured at the average centre of mass energy of 35 GeV with the JADE detector at thee+e− storage ring PETRA. Charmed quarks were identified byD*± tagging using the ΔM technique.D*± mesons were reconstructed through their decay intoD0 mesons resulting in (Kπ) π and (K π π π) π final states. The measured charge asymmetryA=−0.149±0.067 is in agreement with the expectation from the electroweak interference effect in quantum flavour dynamics (QFD).
The production of prompt muons ine+e− annihilation has been studied at centre of mass energies near 34.5 GeV. The measured semi-muonic branching ratios ofb andc quarks areB(b»Xμv) =0.117±0.028±0.01 andB(c→Xμv)=0.082 ±0.012a−0.01+0.02. The fragmentation functions of heavy quarks are hard, <zb>=0.85a−0.12–0.07+0.10+0.02 and <zc> =0.77a−0.07–0.11+0.05+0.03. Limits have been set on flavour changing neutral current decays:B(b→Xµ+µ−) <0.02 andB(b→Xµ+µ− (95% confidence level).
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
The forward-backward asymmetry of quarks produced in e+e− annihilations, summed over all flavors, is measured at √s between 50 and 60.8 GeV. Methods of determining the charge direction of jet pairs are discussed. The asymmetry is found to agree with the five-flavor standard model.
We present a direct measurement of Ac=2vcac(vc2+ac2) from the left-right forward-backward asymmetry of D*+ and D+ mesons in Z0 events produced with the longitudinally polarized SLAC Linear Collider beam. These Z0→cc¯ events are tagged on the basis of event kinematics and decay topology from a sample of hadronic Z0 decays recorded by the SLAC Large Detector. We measure Ac0=0.73±0.22(stat)±0.10(syst).
We present direct measurements of the $Z~0$-lepton coupling asymmetry parameters, $A_e$, $A_\mu$, and $A_\tau$, based on a data sample of 12,063 leptonic $Z~0$ decays collected by the SLD detector. The $Z$ bosons are produced in collisions of beams of polarized $e~-$ with unpolarized $e~+$ at the SLAC Linear Collider. The couplings are extracted from the measurement of the left-right and forward-backward asymmetries for each lepton species. The results are: $A_e=0.152 \pm 0.012 {(stat)} \pm 0.001 {(syst)}$, $A_\mu=0.102 \pm 0.034 \pm 0.002$, and $A_\tau=0.195 \pm 0.034 \pm 0.003$.
The production ofb andc quarks ine+e− annihilation has been studied with the CELLO detector in the range from 35 GeV up to the highest PETRA energies. The heavy quarks have been tagged by their semileptonic decays. The charge asymmetries forb quarks at 35 and 43 GeV have been found to beAb=−(22.2±8.1)% andAb=−(49.1±16.5)%, respectively, using a method incorporating jet variables and their correlations for the separation of the heavy quarks from the back ground of the lighter quarks. Forc quarks we obtainAc=−(12.9±8.8)% andAc=+(7.7±14.0)%, respectively. The axial vector coupling constants of the heavy quarksc andb are found to beac=+(0.29±0.46) andab=−(1.15±0.41) taking\(B^0 \overline {B^0 } \) mixing into account. The results are in agreement with the expectations from the standard model.
The forward-backward charge asymmetries of theb andc quarks are measured with the JADE detector at PETRA at\(\sqrt s= 35\) GeV and 44 GeV using both electrons and muons to tag the heavy quarks. At\(\sqrt s= 35\) GeV, a simultaneous fit for the two asymmetries yields the resultAb=−9.3±5.2% (state.) ndAc=−9.6±4.0% (stat.). The systematic errors are comparable with the statistical uncertainties. Combining the measurements at both energies and alternately constraining the weak coupling of thec andb quark to their Standard Model values (ac=1,ab=−1) increases the precision of the measurement of coupling constant of the other quark. Using this procedureab=−0.72±0.34 andac=0.79±0.40, where the numbers are corrected for\(B\bar B - mixing\) and the errors include both statistical and systematic contributions. The mixing parameter for continuum\(b\bar b - production\) is determined to be χ-0.24±0.12 if both heavy quark coupling constants are constrained to their values in the Standard Model.
We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.
We have measured the properties of Z 0 → b b decays using a sample of 944 inclusive muon events, corresponding to 18 000 hadron events obtained with the L3 detector at LEP. We measured the partial decay width of the Z 0 into b b , Γ b b =353±48 MeV , and we determined the vector coupling of the Z 0 to the b quark; g rmv 2 (b)=0.095±0.047. We measured the forward-backward charge asymmetry in e + e − → b b events at √ s ≈ M v , and obtained A b b =13.3±9.9% .
High p ⊥ inclusive muon events produced in e + e − annihilations at √ s =29 GeV have been analyzed to obtain a measurement of the b b forward-backward charge asymmetry. The result A b =0.034±0.070±0.035 differs from the theoretical expectation (−0.16) unless substantial B 0 B 0 mixing is assumed.
Measurements of the forward-backward asymmetry of e + e − → cc events were carried out at a mean √s energy of 57.95 GeV at TRISTAN, KEK. The cc events were tagged either by the full-reconstruction of D ∗± or the inclusive P T spectrum of π s ± from D ∗± → D 0 ( D 0 )π s ± . The forward-backward asymmetry was measured to be A FB c = −0.49 −0.13 +0.14 (stat.) ± 0.06 (syst.), consistent with the standard model.
We present a measurement of asymmetries in the production of $\Lambda_c^+$ and $\Lambda_c^-$ baryons in 500 GeV/c $\pi^-$--nucleon interactions from the E791 experiment at Fermilab. The asymmetries were measured as functions of Feynman x ($x_F$) and transverse momentum squared ($p_T^2$) using a sample of $1819 \pm 62$ $\Lambda_c$'s observed in the decay channel $\Lambda_c \to pK^-\pi^+$. We observe more $\Lambda_c^+$ than $\Lambda_c^-$ baryons, with an asymmetry of $(12.7\pm3.4\pm1.3) %$ independent of $x_F$ and $p_T^2$ in our kinematical range $(-0.1 < x_F < 0.6$ and $0.0 < p_T^2 < 8.0 (GeV/c)^2$). This $\Lambda_c$ asymmetry measurement is the first with data in both the positive and negative $x_F$ regions.
We report the first measurement of the lepton forward-backward asymmetry ${\cal A}_{\rm FB}$ as a function of the squared four-momentum of the dilepton system, $q^2$, for the electroweak penguin process $B \rightarrow X_s \ell^+ \ell^-$ with a sum of exclusive final states, where $\ell$ is an electron or a muon and $X_s$ is a hadronic recoil system with an $s$ quark. The results are based on a data sample containing $772\times10^6$ $B\bar{B}$ pairs recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. ${\cal A}_{\rm FB}$ for the inclusive $B \rightarrow X_s \ell^+ \ell^-$ is extrapolated from the sum of 10 exclusive $X_s$ states whose invariant mass is less than 2 GeV/$c^2$. For $q^2 > 10.2$ GeV$^2$/$c^2$, ${\cal A}_{\rm FB} < 0$ is excluded at the 2.3$\sigma$ level, where $\sigma$ is the standard deviation. For $q^2 < 4.3$ GeV$^2$/$c^2$, the result is within 1.8$\sigma$ of the Standard Model theoretical expectation.
We present a precise measurement of the left-right cross section asymmetry ( A LR ) for Z boson production by e + e − collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0±1.1)%. Using a sample of 49,392 Z decays, we measure A LR to be 0.1628±0.0071(stat.)±0.0028(syst.) which determines the effective weak mixing angle to be sin 2 θ W f eff = 0.2292 ± 0.0009(stat.) ± 0.0004(syst.).
The forward-backward asymmetry of bottom quarks is measured with statistics of approximately 80 000 hadronic Z 0 decays produced in e + e − collisions at a centre of mass energy of √ s ≈ M z . The tagging of b quark events has been performed using the semileptonic decay channel b→X+ μ . Because the asymmetry depends on the weak coupling, this leads to a precise measurement of the electroweak mixing angle sin 2 θ w . The experimental result is A FB b = 0.115±0.043(stat.)±0.013(syst.). After correcting the value for the B 0 B 0 mixing this becomes A FB b =0.161±0.060(stat.)±0.021(syst.) corresponding to sin 2 θ W MS =0.221±0.011( stat. )±0.004( syst. ) .