Measurement of the spin asymmetry in the photoproduction of pairs of high p(T) hadrons at HERMES.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Amarian, M. ; et al.
Phys.Rev.Lett. 84 (2000) 2584-2588, 2000.
Inspire Record 503784 DOI 10.17182/hepdata.43919

We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.

1 data table match query

Asymmetry measurement with a PT cut of 1.5 GeV on the hadron with the higher PT, and 1.0 GeV on the hadron with the lower PT.


A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

The COMPASS collaboration Ageev, E.S. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Nucl.Phys.B 765 (2007) 31-70, 2007.
Inspire Record 729695 DOI 10.17182/hepdata.48535

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.

24 data tables match query

Collins asymmetry against PT for all negative hadrons.

Collins asymmetry against Bjorken X for all negative hadrons.

Collins asymmetry against Z for all negative hadrons.

More…

First measurement of the transverse spin asymmetries of the deuteron in semi-inclusive deep inelastic scattering.

The COMPASS collaboration Alexakhin, V.Yu. ; Alexandrov, Yu. ; Alexeev, G.D. ; et al.
Phys.Rev.Lett. 94 (2005) 202002, 2005.
Inspire Record 677550 DOI 10.17182/hepdata.48553

First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.

6 data tables match query

Asymmetries as a function of X for LEADING hadrons.

Asymmetries as a function of Z for LEADING hadrons.

Asymmetries as a function of PT for LEADING hadrons.

More…

Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

4 data tables match query

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for 0.5<|eta|<1.0.

$A_{LL}$ model predictions for |eta|<0.5.

More…

Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables match query

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Flavour Separation of Helicity Distributions from Deep Inelastic Muon-Deuteron Scattering

The COMPASS collaboration Alekseev, M. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Phys.Lett.B 680 (2009) 217-224, 2009.
Inspire Record 820721 DOI 10.17182/hepdata.55300

We present a LO evaluation of helicity densities of valence, \Delta u_v+\Delta d_v, non-strange sea, \Delta\bar{u}+\Delta\bar{d}, and strange quarks, \Delta s (assumed to be equal to \Delta\bar{s}). They have been obtained from the inclusive asymmetry A_{3,d} and the semi-inclusive asymmetries A^{\pi+}_{1,d}, A^{\pi-}_{1,d}, A^{K+}_{1,d}, A^{K-}_{1,d} measured in polarised deep inelastic muon-deuteron scattering. The full deuteron statistics of COMPASS (years 2002-2004 and 2006) has been used. The data cover the range Q^2 > 1 (GeV/c)^2 and 0.004<x<0.3. Both non-strange densities are found to be in a good agreement with previous measurements. The distribution of \Delta s(x) is compatible with zero in the whole measured range, in contrast to the shape of the strange quark helicity distribution obtained in most LO and NLO QCD fits. The sensitivity of the values of \Delta s(x) upon the choice of fragmentation functions used in the derivation is discussed.

2 data tables match query

Inclusive asymmetry as a function of X.

Charged pion and kaon semi-inclusive asymmetries as functions of X.


Measurement of Lambda polarization from Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 374 (1996) 319-330, 1996.
Inspire Record 415745 DOI 10.17182/hepdata.47830

The polarization of Λ baryons from Z decays is studied with the Aleph apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is P L Λ = −0.32 ± 0.07 for z = p p beam > 0.3 . This agrees with the prediction of −0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ Λ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.

1 data table match query

No description provided.


The Forward - backward asymmetry for charm quarks at the Z pole

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 352 (1995) 479-486, 1995.
Inspire Record 394753 DOI 10.17182/hepdata.47932

From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.

2 data tables match query

Value of SIN2TW(eff) from CQ-quark asymmetries.

No description provided.


Determination of A(b)(FB) using jet charge measurements in Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Lett.B 426 (1998) 217-230, 1998.
Inspire Record 468671 DOI 10.17182/hepdata.49559

An improved measurement of the forward-backward asymmetry in Z →b b ̄ decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b -jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at s =m Z is determined to be: A b FB =0.1017±0.0038(stat.)±0.0032(syst.). In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of sin 2 θ W eff =0.23109±0.00096.

2 data tables match query

Only statistical errors are given for sqrt(s) = 89.43 and 92.97 GeV.

The combination of the data on and off peak of Z-boson.


Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 95 (2017) 071103, 2017.
Inspire Record 1493842 DOI 10.17182/hepdata.77208

We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.

4 data tables match query

Di-jet A_LL asymmetry vs parton-level invariant mass for the same-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

Theoretical predictions for the di-jet A_LL asymmetry for the same-sign topology using the DSSV14 and NNPDFpol1.1 polarized PDF sets. The DSSV14 prediction is presented without uncertainty while the systematic uncertainty on the NNPDFpol1.1 prediction contains contributions from factorization and renormalization scale uncertainties and PDF uncertainties.

Di-jet A_LL asymmetry vs parton-level invariant mass for the opposite-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.

More…