Coupling Strengths of Weak Neutral Currents From Leptonic Final States at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 16 (1983) 301, 1983.
Inspire Record 180756 DOI 10.17182/hepdata.16385

Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).

2 data tables match query

No description provided.

Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.


Analysis of the Energy Weighted Angular Correlations in Hadronic $e^+ e^-$ Annihilations at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 14 (1982) 95, 1982.
Inspire Record 12010 DOI 10.17182/hepdata.16413

Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.

4 data tables match query

ENERGY-ENERGY CORRELATIONS FOR FINAL STATE PARTICLES.

ENERGY-ENERGY CORRELATIONS FOR PRIMORDIAL HADRONS.

ASSYMETRY IN ENERGY CORRELATIONS FOR FINAL STATE PARTICLES.

More…

Topology of Hadronic $e^+ e^-$ Annihilation Events at 22-{GeV} and 34-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Field, J.H. ; et al.
Phys.Lett.B 110 (1982) 329-334, 1982.
Inspire Record 169195 DOI 10.17182/hepdata.30996

The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.

1 data table match query

No description provided.


Electroweak Coupling Constants in the Leptonic Reactions e+ e- ---> e+ e- and e+ e- ---> mu+ mu- and Search for Scalar Leptons

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 117 (1982) 365-371, 1982.
Inspire Record 178495 DOI 10.17182/hepdata.6669

A high statistics experiment was performed on Bhabha scattering at energies between 14 and 34 GeV. Good agreement with QED was observed. The combined data on Bhabha scattering and μ pair production were found to agree with the standard theory of electroweak interaction giving sin 2 θ = 0.27 −0.07 +0.06 . Assuming for the Z 0 mass a value of 90 GeV the leptonic weak coupling constants were determined to g V 2 = −0.04 ± 0.06 and g A 2 = 0.35 ± 0.09. A search for scalar leptons sets lower limits on the mass of scalar electrons of M s e > 16.6 GeV and of scalar muons of M s μ > 16.4 GeV.

2 data tables match query

No description provided.

No description provided.


Global Jet Properties at 14-{GeV} to 44-{GeV} Center-of-mass Energy in $e^+ e^-$ Annihilation

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 47 (1990) 187-198, 1990.
Inspire Record 294755 DOI 10.17182/hepdata.45170

Jet properties ine+e− annihilation at center of mass energies of 14, 22, 35 and 43.7 GeV were studied with the data collected in the TASSO detector at PETRA, using the same evaluation procedures for all the energies. The total hadronic cross section ratio for the center of mass energy interval 39–47 GeV was determined to be ℛ=4.11±0.05 (stat)±0.18(syst.) at\(\langle \sqrt s \rangle= 43 - 7\) GeV. Corrected distributions of global shape variables are presented as well as the inclusive charged particle distributions for scaled momentum and transverse momentum. The center of mass energy evolution of the average sphericity, thrust, aplanarity and particle momentum is shown.

8 data tables match query

R values. First systematic error comes from selection cuts and Monte Carlo, the second from the luminosity measurement and missing terms in the radiative correction calculations.

Normalised scaled momentum distributions. Data have combined statistical and systematic errors. These data superceded previous TASSO data (ZP C22 (84) 307 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1279> RED = 1279 </a>)).

Normalised scaled momentum distributions. Data have combined statistical and systematic errors. The binning is as used in fits in the paper. These data superceded previous TASSO data (ZP C22 (84) 307 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1279> RED = 1279 </a>)).

More…

A Measurement of Strong Coupling Constant $\alpha_s$ to Second Order for 14-{GeV} $\le \sqrt{s} \le$ 46.78-{GeV}

The MARK-J collaboration Adeva, B. ; Becker, U. ; Becker-Szendy, R. ; et al.
Phys.Rev.Lett. 54 (1985) 1750, 1985.
Inspire Record 208007 DOI 10.17182/hepdata.20386

Using the Mark-J detector at the high-energy e+e− collider PETRA, we compare the data from hadron production with the complete second-order QCD calculation over the energy region 22 to 46.78 GeV. We determine the QCD parameter Λ=100±30−45+60 MeV which yields the strong-coupling constant αs=0.12±0.02 for s=44 GeV.

2 data tables match query

No description provided.

Axis error includes +- 0.0/0.0 contribution (DUE TO FRAGMENTATION MODEL).


Charged Pion Production in $e^+ e^-$ Annihilation at 14-{GeV}, 22-{GeV} and 34-{GeV} Center-of-mass Energy

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 113 (1982) 98-104, 1982.
Inspire Record 176886 DOI 10.17182/hepdata.30892

The inclusive production of π ± mesons in e + e − annihilation has been measured at c.m. energies of 14, 22 and 34 GeV for pion momenta between 0.3 ans 10 GeV/ c . The fraction of pions among the charged hadrons is above 90% at 0.4 GeV/ c and decreases to about 50% at high momenta. The scaled cross sections ( s β ) d σ d x at 14, 22 and 34 GeV as well as the 5.2 GeV data from DASP have a rather similar x dependence. After integration over the x range from 0.2 to 0.6 the cross sections indicate a monotonic decrease with increasing centre-of-mass energy.

16 data tables match query

PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.

PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.

PION FRACTIONS IDENTIFIED BY INNER TOF COUNTERS (ITOF). ERRORS SHOWN ARE STATISTICAL ONLY.

More…

Experimental Investigation of the Energy Dependence of the Strong Coupling Strength

The JADE collaboration Bethke, S. ; Allison, John ; Ambrus, K. ; et al.
Phys.Lett.B 213 (1988) 235-241, 1988.
Inspire Record 263579 DOI 10.17182/hepdata.29894

The energy dependence of the relative production rate of three-jet events is studied in hadronic e + e − annihilation events at center of mass energies between 22 and 46.7 GeV. Three-jet events are defined by a jet finding algorithm which is closely related to the definition of resolvable jets used in O( α s 2 ) perturbative QCD calculations, where the relative production rate of three-jet events is roughly proportional to the size of the strong coupling strength. The production rates of three-jet events in the data decrease significantly with increasing centre of mass energy. The experimental rates, which are independent of fragmentation model calculations, can be directly compared to theoretically calculated jet production rates and are in good agreement with the QCD expectations of a running coupling strength. The hypothesis of an energy independent coupling constant can be excluded with a significance of four standard derivations.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Observation of $e^+ e^- \to D(s$)+- $D^*(s$)-+ at $\sqrt{s}=4$.14-{GeV}

The MARK-III collaboration Blaylock, G. ; Bolton, T. ; Brown, J.S. ; et al.
Phys.Rev.Lett. 58 (1987) 2171, 1987.
Inspire Record 244856 DOI 10.17182/hepdata.20170

We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.

1 data table match query

No description provided.


Electron-Positron Elastic Scattering at 5-GeV Center-Of-Mass Energy

Newman, H. ; Averill, R. ; Eshelman, J. ; et al.
Phys.Rev.Lett. 32 (1974) 483, 1974.
Inspire Record 744 DOI 10.17182/hepdata.21306

We have measured the cross section, the distribution of scattering angles, and the distribution of noncoplanarity angles for electron-positron elastic scattering at 5 GeV c. m. energy. An analysis based on 230 events with scattering angles between 50 and 130° yields a ratio of the experimental to theoretical quantum-electrodynamic cross section of 1.03 ± 0.09. The scattering-angle and noncoplanarity-angle distributions are also found to be in excellent agreement with the quantum-electrodynamic predictions.

1 data table match query

No description provided.