Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables match query
More…

pi+-p Scattering at 250 MeV: Experiment and Analysis

Troka, Wladyslaw ; Betz, Fred ; Chamberlain, Owen ; et al.
Phys.Rev. 144 (1966) 1115-1122, 1966.
Inspire Record 944955 DOI 10.17182/hepdata.26637

The differential cross section for elastic scattering of positive pions on protons has been measured at a nominal incident-meson kinetic energy of 250 MeV. The angular range covered in the center of mass by the 13 data was 14.9° to 160°. The fractional rms errors were typically 1.5%. A liquid-hydrogen target was bombarded by a beam of 2.5×106 mesons/sec. The scattered pions were detected by a counter telescope. Recoil protons were eliminated by means of a Čerenkov counter. A phase-shift analysis was performed combining the above-mentioned data with the recoil-proton polarization measurements taken recently with the help of a polarized proton target. Only one acceptable SPD Fermi-type phase-shift set was found. When F waves were included, a total of three possible phase-shift solutions emerged from the analysis. However, arguments based on the data could still be made to eliminate all but one phase-shift set. On the other hand, the remaining phase-shift set, similar in type to the SPD solution, suffers from the disadvantage of large rms errors assigned to its small phase shifts.

1 data table match query

No description provided.


Analysis of the Energy Weighted Angular Correlations in Hadronic $e^+ e^-$ Annihilations at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 14 (1982) 95, 1982.
Inspire Record 12010 DOI 10.17182/hepdata.16413

Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.

4 data tables match query

ENERGY-ENERGY CORRELATIONS FOR FINAL STATE PARTICLES.

ENERGY-ENERGY CORRELATIONS FOR PRIMORDIAL HADRONS.

ASSYMETRY IN ENERGY CORRELATIONS FOR FINAL STATE PARTICLES.

More…

Neutron-Proton Charge-Exchange Scattering from 22-GeV/c to 65-GeV/c

Babaev, A. ; Brachman, E. ; Eliseev, G. ; et al.
Nucl.Phys.B 110 (1976) 189-204, 1976.
Inspire Record 100178 DOI 10.17182/hepdata.35776

The differential cross sections for neutron-proton elastic charge-exchange scattering have been measured with a two-arm technique for incident neutron momenta between 22 and 65 GeV/ c and for values of the momentum transfer squared between 0.002 and 0.8 (GeV/ c ) 2 . The sharp forward peak observed previously at lower energies is also present at momenta up to 65 GeV/ c ; however the s dependence of the cross section is slowing down.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Small Angle anti-Proton - Proton and Proton Proton Elastic Scattering at the CERN Intersecting Storage Rings

Amos, Norman A. ; Block, M.M. ; Bobbink, G.J. ; et al.
Nucl.Phys.B 262 (1985) 689-714, 1985.
Inspire Record 214689 DOI 10.17182/hepdata.33711

Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies s =30.6, 52.8 and 62.3 GeV at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at s =23.5 GeV . Using the optical theorem, total cross sections are obtained with an accuracy of about 0.5% for proton-proton scattering and about 1% for antiproton-proton scattering. The measurement of the interference of the Coulomb scattering and the hadronic scattering permits a determination of the ratio of the real-to-imaginary part of the forward hadronic scattering amplitude. Also presented are measurements of the hadronic slope parameter.

13 data tables match query

No description provided.

No description provided.

No description provided.

More…

First observation of Sigma- e- elastic scattering in the hyperon beam experiment WA89 at CERN.

The WA89 collaboration Adamovich, M.I. ; Aleksandrov, Yu.A. ; Barberis, D. ; et al.
Eur.Phys.J.C 8 (1999) 59-66, 1999.
Inspire Record 500379 DOI 10.17182/hepdata.43061

We have investigated the elastic scattering of high energy $\Sigma^-$ off electrons from carbon and copper targets using the CERN hyperon beam. Scattering events a

1 data table match query

No description provided.


Elastic scattering of protons on deuterons at high energy

Bradamante, F. ; Fidecaro, G. ; Fidecaro, M. ; et al.
Phys.Lett.B 32 (1970) 303-308, 1970.
Inspire Record 63124 DOI 10.17182/hepdata.28773

The differential cross-section for pd elastic scattering has been measured at 9.7, 12.8 and 15.8 GeV/ c for t -values up to −2 GeV 2 . The Glauber multiple scattering model has been used to analyse the data, the main interest being the double scattering region.

3 data tables match query

No description provided.

No description provided.

No description provided.


Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Lett.Nuovo Cim. 40 (1984) 466-470, 1984.
Inspire Record 1388775 DOI 10.17182/hepdata.37297

The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.

1 data table match query

No description provided.


Anti-proton - Proton Elastic Cross-sections in the Momentum Range Between 180-{MeV}/$c$ and 600-{MeV}/$c$

Bruckner, W. ; Dobbeling, H. ; Guttner, F. ; et al.
Phys.Lett.B 166 (1986) 113-118, 1986.
Inspire Record 217928 DOI 10.17182/hepdata.30308

Differential cross sections for p̄p elastic scattering have been measured in the full angular range for the p̄ momenta between 180 and 600 MeV/ c . It is found that s- and p-wave scattering is dominant below 300 MeV/ c . The s-wave component in the total cross section is 40–60% below 300 MeV/ c , in contrast to the NN scattering where it is about 90%. The s-, p- and d-wave scattering amplitudes are derived.

3 data tables match query

No description provided.

No description provided.

No description provided.


Elastic Scattering of 10-GeV/c pi+ and K+ Mesons and of 9-GeV/c Protons on Protons

Baglin, C. ; Briandet, P. ; Fleury, P. ; et al.
Nucl.Phys.B 98 (1975) 365-400, 1975.
Inspire Record 98834 DOI 10.17182/hepdata.31908

Angular distributions of π + and K + p elastic scattering have been measured for an incident beam momentum of 10.0 GeV/ c . For π + p elastic scattering almost the complete angular distribution was measured. The angular distribution of proton-proton elastic scattering was measured for an incident momentum of 9.0 GeV/ c in the interval of the four-momentum transfer squared from 0.7 (GeV/ c ) 2 to 5.0 (GeV/ v ) 2 . For π + p elastic scattering the structures at − t = 2.8 (GeV/ c ) 2 and − t = 4.8 (GeV/ c ) 2 are less pronounced than at lower momenta. The cross section for scattering at 90° in the c.m. system is of the order of 1 nb/GeV/ c ) 2 . For K + p elastic scattering is a break in the angular distribution around − t = 3 (GeV/ c ) 2 . The differential cross sections for proton-proton elastic scattering decrease smoothly with increasing momentum transfers.

3 data tables match query

S=19.667 GEV**2, U=-T-17.867 GEV**2.

S=19.91 GEV**2, U=-T-17.704 GEV**2.

S=18.74 GEV**2.