Measurements of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 518, 2023.
Inspire Record 2152933 DOI 10.17182/hepdata.135459

A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.

149 data tables match query

Binning used for the measured $\sum_{n_{\text{ch}}} p_{\text{T}}$ in bins of $n_\text{ch}$ observable.

Event yields obtained after the event selection. The expected event yields from $t\bar{t}$ production and the various background processes are compared with the observed event yield. The fractional contributions from $t\bar{t}$ production and the background processes to the expected event yield is given in %. The processes labelled by `Others' include production of $Z$+jets and diboson background events. The uncertainties include the MC statistical uncertainty and the normalisation uncertainty.

Summary of the estimated pile-up scale factors $c_{\text{PU}}$, parameterisd in $\mu$ and $n_{\text{trk,out}}$. All values have a statistical precision of 0.01.

More…

Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 02 (2014) 024, 2014.
Inspire Record 1275617 DOI 10.17182/hepdata.64868

The top-antitop quark (t t-bar) production cross section is measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 inverse femtobarns. The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model.

2 data tables match query

The total efficiencies etotal, i.e. the products of event acceptance, selection efficiency and branching fraction for the respective TOP TOPBAR final states, as estimated from simulation for a top-quark mass of 172.5 GeV, and the measured TOP TOPBAR production cross sections, where the uncertainties are from statistical, systematic and integrated luminosity components, respectively.

The TOP TOPBAR cross section obtained by combining all final states.


Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 146, 2020.
Inspire Record 1772050 DOI 10.17182/hepdata.95469

The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric ($\hat{d}_\mathrm{t}$) and chromomagnetic ($\hat{\mu}_\mathrm{t}$) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The linearized variable $A_\mathrm{FB}^{(1)}$ is used to approximate the asymmetry. Candidate $\mathrm{t\bar{t}}$ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for $\mathrm{t\bar{t}}$ final states. The values found for the parameters are $A_\mathrm{FB}^{(1)} =$ 0.048 $^{+0.095}_{-0.087}$ (stat) $^{+0.020}_{-0.029}$ (syst), $\hat{\mu}_\mathrm{t} =-$ 0.024 $^{+0.013}_{-0.009}$ (stat) $^{+0.016}_{-0.011}$ (syst), and a limit is placed on the magnitude of $|\hat{d}_\mathrm{t}|$ $<$ 0.03 at 95% confidence level.

3 data tables match query

Linearized top quark forward-backward production asymmetry $A_{FB}^{(1)}$

Top quark anomalous chromomagnetic dipole moment $\hat{\mu}_{t}$

Top quark anomalous chromoelectric dipole moment $\hat{d}_{t}$


Measurements of t t-bar charge asymmetry using dilepton final states in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 365-386, 2016.
Inspire Record 1430892 DOI 10.17182/hepdata.71444

The charge asymmetry in t t-bar events is measured using dilepton final states produced in pp collisions at the LHC at sqrt(s) = 8 TeV. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.5 inverse femtobarns. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The charge asymmetry is measured from differences in kinematic distributions, unfolded to the parton level, of positively and negatively charged top quarks and leptons. The t t-bar and leptonic charge asymmetries are found to be 0.011 +/- 0.011 (stat) +/- 0.007 (syst) and 0.003 +/- 0.006 (stat) +/- 0.003 (syst), respectively. These results, as well as charge asymmetry measurements made as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system, are in agreement with predictions of the standard model.

43 data tables match query

Inclusive values of the asymmetry variables.

Values of the 6 bins of the normalized differential cross section as a function of $\Delta|y_\mathrm{t}|$.

Statistical covariance matrix for the 6 bins of the normalized differential cross section as a function of $\Delta|y_\mathrm{t}|$.

More…

Version 3
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 091, 2022.
Inspire Record 2013377 DOI 10.17182/hepdata.113657

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.

63 data tables match query

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $e\mu$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $ee$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $\mu\mu$ channel, after the fit to the data.

More…

Search for Baryon Number Violation in Top-Quark Decays

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 731 (2014) 173-196, 2014.
Inspire Record 1257387 DOI 10.17182/hepdata.62206

A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excess of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.

3 data tables match query

Muon channel: expected and observed yields in the tight selections for an assumed BNV decay branching fraction of zero. The uncertainties include both statistical and systematic contributions.

Electron channel: expected and observed yields in the tight selections for an assumed BNV decay branching fraction of zero. The uncertainties include both statistical and systematic contributions.

Expected and observed 95% CL upper limits on the BNV decay branching fraction.


Measurement of the top quark mass using proton-proton data at ${\sqrt{(s)}}$ = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 072004, 2016.
Inspire Record 1393269 DOI 10.17182/hepdata.71988

A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at sqrt(s) = 8 TeV corresponding to a luminosity of 19.7 inverse femtobarns. The top quark mass is measured using the lepton + jets, all-jets and dilepton decay channels, giving values of 172.35 +/- 0.16 (stat) +/- 0.48 (syst) GeV, 172.32 +/- 0.25 (stat) +/- 0.59 (syst) GeV, and 172.82 +/- 0.19 (stat) +/- 1.22 (syst) GeV, respectively. When combined with the published CMS results at sqrt(s) = 7 TeV, they provide a top quark mass measurement of 172.44 +/- 0.13 (stat) +/- 0.47 (syst) GeV. The top quark mass is also studied as a function of the event kinematical properties in the lepton + jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t-bar production.

9 data tables match query

Measurement of $m_{t}$ as a function of the transverse momentum of the hadronically decaying top quark.

Measurement of $m_{t}$ as a function of the invariant mass of the tt¯ system.

Measurement of $m_{t}$ as a function of the transverse momentum of the tt¯ system.

More…

Measurements of t t-bar spin correlations and top quark polarization using dilepton final states in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 052007, 2016.
Inspire Record 1413748 DOI 10.17182/hepdata.70879

Measurements of the top quark-antiquark (t t-bar) spin correlations and the top quark polarization are presented for t t-bar pairs produced in pp collisions at sqrt(s) = 8 TeV. The data correspond to an integrated luminosity of 19.5 inverse femtobarns collected with the CMS detector at the LHC. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The spin correlations and polarization are measured from the angular distributions of the two selected leptons, both inclusively and differentially, with respect to the invariant mass, rapidity, and transverse momentum of the t t-bar system. The measurements are unfolded to the parton level and found to be in agreement with predictions of the standard model. A search for new physics in the form of anomalous top quark chromo moments is performed. No evidence of new physics is observed, and exclusion limits on the real part of the chromo-magnetic dipole moment and the imaginary part of the chromo-electric dipole moment are evaluated.

106 data tables match query

Inclusive values of the asymmetry variables.

Values of the 12 bins of the normalized differential cross section as a function of $\left|\Delta \phi_{\ell^+\ell^-}\right|$.

Statistical covariance matrix for the 12 bins of the normalized differential cross section as a function of $\left|\Delta \phi_{\ell^+\ell^-}\right|$.

More…

Measurement of the top quark mass using charged particles in collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 092006, 2016.
Inspire Record 1430902 DOI 10.17182/hepdata.72898

A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 inverse femtobarns. By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected to be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68 +/- 0.20 (stat) +1.58 -0.97 (syst) GeV is measured. The overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.

3 data tables match query

Combined measurement of the top quark mass.

Number of observed events and expected purity of top quark production ($t\bar{t}$ and single top quarks) for the five channels investigated in this analysis.

Summary of the systematic uncertainties in the final measurement. In cases where there are two variations of one source of uncertainty, the first and second numbers correspond, respectively, to the down and up variations. The total uncertainties are taken as the separate quadratic sum of all positive and negative shifts. For the contributions marked with a (*), the shift of the single variation including its sign is given, but the uncertainty is counted symmetrically in both up and down directions for the total uncertainty calculation.


Measurement of the top quark pair production cross section in dilepton final states containing one $\tau$ lepton in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2020) 191, 2020.
Inspire Record 1767671 DOI 10.17182/hepdata.93743

The cross section of top quark pair production is measured in the $\mathrm{t\bar{t}}\to (\ell\nu_{\ell})(\tau_\mathrm{h}\nu_{\tau})\mathrm{b\bar{b}}$ final state, where $\tau_\mathrm{h}$ refers to the hadronic decays of the $\tau$ lepton, and $\ell$ is either an electron or a muon. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}=$ 13 TeV with the CMS detector. The measured cross section is $\sigma_{\mathrm{t\bar{t}}} =$ 781 $\pm$ 7 (stat) $\pm$ 62 (syst) $\pm$ 20 (lum) pb, and the ratio of the partial width $\Gamma($t$\to\tau\nu_{\tau}$b) to the total decay width of the top quark is measured to be 0.1050 $\pm$ 0.0009 (stat) $\pm$ 0.0071 (syst). This is the first measurement of the $\mathrm{t\bar{t}}$ production cross section in proton-proton collisions at $\sqrt{s}=$ 13 TeV that explicitly includes $\tau$ leptons. The ratio of the cross sections in the $\ell\tau_\mathrm{h}$ and $\ell\ell$ final states yields a value $R_{\ell\tau_\mathrm{h}/\ell\ell}=$ 0.973 $\pm$ 0.009 (stat) $\pm$ 0.066 (syst), consistent with lepton universality.

3 data tables match query

The measured inclusive top quark pair production cross section in the dilepton final state with one tau lepton.

The ratio between top quark production cross sections measured in lepton-tau and light dilepton final states.

The ratio of the partial width to the total decay width of the top quark.