Measurement of the prompt $J/\psi$ pair production cross-section in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 76, 2017.
Inspire Record 1502618 DOI 10.17182/hepdata.76840

The production of two prompt $J/\psi$ mesons, each with transverse momenta $p_{\mathrm{T}}>8.5$ GeV and rapidity $|y| < 2.1$, is studied using a sample of proton-proton collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 11.4 fb$^{-1}$ collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised $J/\psi$ production, is measured as a function of the transverse momentum of the lower-$p_{\mathrm{T}}$ $J/\psi$ meson, di-$J/\psi$ $p_{\mathrm{T}}$ and mass, the difference in rapidity between the two $J/\psi$ mesons, and the azimuthal angle between the two $J/\psi$ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two $J/\psi$ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be $\sigma_{\mathrm{eff}} = 6.3 \pm 1.6 \mathrm{(stat)} \pm 1.0 \mathrm{(syst)}$ mb.

16 data tables match query

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the sub-leading $J/\psi$ transverse momentum in the forward rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

The cross-section in bins of the di-$J/\psi$ transverse momentum in the central rapidity region, assuming unpolarised $J/\psi$ mesons and excluding the $J/\psi$ spin-alignment systematic uncertainty. The branching fraction and luminosity uncertainties are not included in the systematic uncertainty as they are constant at 1.1$\%$ and 1.9$\%$ respectively.

More…

Observation and measurements of the production of prompt and non-prompt $J/\psi$ mesons in association with a $Z$ boson in $pp$ collisions at $\sqrt{s}= 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 229, 2015.
Inspire Record 1335136 DOI 10.17182/hepdata.73284

The production of a $Z$ boson in association with a $J/\psi$ meson in proton-proton collisions probes the production mechanisms of quarkonium and heavy flavour in association with vector bosons, and allows studies of multiple parton scattering. Using $20.3\, \mathrm{fb^{-1}}$ of data collected with the ATLAS experiment at the LHC in $pp$ collisions at $\sqrt{s}=8\, \mathrm{TeV}$, the first measurement of associated $Z + J/\psi$ production is presented for both prompt and non-prompt $J/\psi$ production, with both signatures having a significance in excess of $5\sigma$. The inclusive production cross-sections for $Z$ boson production (analysed in $\mu^+\mu^-$ or $e^+e^-$ decay modes) in association with prompt and non-prompt $J/\psi(\to\mu^+\mu^-)$ are measured relative to the inclusive production rate of $Z$ bosons in the same fiducial volume to be $(36.8\pm 6.7\pm 2.5) \times 10^{-7}$ and $(65.8\pm 9.2\pm 4.2) \times 10^{-7}$ respectively. Normalised differential production cross-section ratios are also determined as a function of the $J/\psi$ transverse momentum. The fraction of signal events arising from single and double parton scattering is estimated, and a lower limit of $5.3\ (3.7)\, \mathrm{mb}$ at $68\ (95)$% confidence level is placed on the effective cross-section regulating double parton interactions.

6 data tables match query

The fiducial, inclusive (SPS+DPS) and DPS-subtracted differential cross-section ratio $R_{Z+J/\psi}$ for prompt $J/\psi$.

The fiducial, inclusive (SPS+DPS) and DPS-subtracted differential cross-section ratio $R_{Z+J/\psi}$ for non-prompt $J/\psi$.

The fiducial, inclusive (SPS+DPS) and DPS-subtracted differential cross-section ratio $\mathrm{d}R_{Z+J/\psi}/\mathrm{d}y$ as a function of $y_{J/\psi}$ for prompt $J/\psi$.

More…

Search for new particles in events with one lepton and missing transverse momentum in $pp$ collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 037, 2014.
Inspire Record 1308524 DOI 10.17182/hepdata.65524

This paper presents a search for new particles in events with one lepton (electron or muon) and missing transverse momentum using 20.3 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded by the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. A $W'$ with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 3.24 TeV. Excited chiral bosons ($W^{*}$) with equivalent coupling strengths are excluded for masses up to 3.21 TeV. In the framework of an effective field theory limits are also set on the dark matter-nucleon scattering cross-section as well as the mass scale $M_{*}$ of the unknown mediating interaction for dark matter pair production in association with a leptonically decaying $W$.

19 data tables match query

Spectrum of lepton PT for the electron channel after the event selection. The spectrum is shown with the requirement MT > 252 GeV.

Spectrum of lepton PT for the muon channel after the event selection. The spectrum is shown with the requirement MT > 252 GeV.

Spectrum of ETmiss for the electron channel after the event selection. The spectrum is shown with the requirement MT > 252 GeV.

More…

Studies of $Z\gamma$ production in association with a high-mass dijet system in $pp$ collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 07 (2017) 107, 2017.
Inspire Record 1598259 DOI 10.17182/hepdata.77542

The production of a $Z$ boson and a photon in association with a high-mass dijet system is studied using 20.2fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total $pp \to Z\gamma j j$ cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes $VV \to Z\gamma$. No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory.

3 data tables match query

The measured fiducial sections of Zyjj in the charged-leptonic channel. In the measured cross-sections, the first uncertainty is the statistical uncertainty, and the second one is the combined systematic uncertainty.

95% confidence level cross-section upper limits on the $Z\gamma jj$ processes in both charged-leptonic and neutrino channels. The reconstruction efficiencies are provided as C-factors.

95% confidence level interval (expected and observed) on aQGC parameters (VBFNLO formalism) provided for different values of unitarity scale (Form Factor).


Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

7 data tables match query

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

High-$E_{\rm T}$ isolated-photon plus jets production in $pp$ collisions at $\sqrt s=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nucl.Phys.B 918 (2017) 257-316, 2017.
Inspire Record 1499475 DOI 10.17182/hepdata.79948

The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

35 data tables match query

Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.

Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.

Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.

More…

Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 73, 2020.
Inspire Record 1762209 DOI 10.17182/hepdata.94802

The azimuthal anisotropy of charged particles produced in $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV $p$+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of $165$ $\mathrm{nb}^{-1}$ that was collected in 2016. Azimuthal anisotropy coefficients, elliptic $v_2$ and triangular $v_3$, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum ($p_\mathrm{T}$) between $0.5$ and $50$ GeV. The $v_2$ results are also reported as a function of centrality in three different particle $p_\mathrm{T}$ intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet $p_\mathrm{T}$ thresholds are used. The anisotropies for particles with $p_\mathrm{T}$ less than about $2$ GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for $p_\mathrm{T}$ in the range $9$-$50$ GeV are not explained within current theoretical frameworks. In the $p_\mathrm{T}$ range $2$-$9$ GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.

45 data tables match query

Distribution of $v_{2}$ from MBT events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

Distribution of $v_{2}$ from $p_{T}^{jet}>75$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

Distribution of $v_{2}$ from $p_{T}^{jet}>100$ GeV events plotted as a function of the A-particle $p_\mathrm{T}$ for 0-5% centrality.

More…

Measurements of $W^\pm Z$ production cross sections in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 092004, 2016.
Inspire Record 1426523 DOI 10.17182/hepdata.75197

This paper presents measurements of $W^\pm Z$ production in $pp$ collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu\ \ell \ell} = 35.1 \pm$ 0.9 (stat.) $\pm 0.8$ (sys.) $\pm 0.8$ (lumi.) fb, for one leptonic decay channel. In comparison, the next-to-leading-order Standard Model expectation is 30.0 $\pm$ 2.1 fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^\pm Z$ system. From the analysis of events with a $W$ and a $Z$ boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^\pm Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted.

48 data tables match query

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

108 data tables match query

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Definition of the fiducial phase space.

More…