Measurement of the photon structure function F2(gamma) at low x.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 225-234, 1997.
Inspire Record 447187 DOI 10.17182/hepdata.49560

Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt{s_ee} ~ M_{Z^0}. The photon structure function F_2^gamma(x,Q^2) is explored in a Q^2 range of 1.1 to 6.6 GeV/c^2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F_2^gamma(x,Q^2) at <Q^2> = 1.86 GeV^2 and 3.76 GeV^2 in five logarithmic x bins from 0.0025 to 0.2.

2 data tables match query

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.


First measurement of Z/gamma* production in Compton scattering of quasi-real photons.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 438 (1998) 391-404, 1998.
Inspire Record 474013 DOI 10.17182/hepdata.49379

We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.

1 data table match query

No description provided.


Measurement of Z / gamma* production in Compton scattering of quasi-real photons.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 24 (2002) 1-15, 2002.
Inspire Record 560307 DOI 10.17182/hepdata.49750

The process e+ e- -> e+ e- Z/gamma* is studied with the OPAL detector at LEP at a centre of mass energy of sqrt(s) = 189 GeV. The cross-section times the branching ratio of the Z/gamma* decaying into hadrons is measured within Lorentz invariant kinematic limits to be (1.2 +/- 0.3 +/- 0.1) pb for invariant masses of the hadronic system between 5 GeV and 60 GeV and (0.7 +/- 0.2 +/- 0.1) pb for hadronic masses above 60 GeV. The differential cross-sections of the Mandelstam variables s-hat, t-hat, and u-hat are measured and compared with the predictions from the Monte Carlo generators grc4f and PYTHIA. From this, based on a factorisation ansatz, the total and differential cross-sections for the subprocess e gamma -> e Z/gamma* are derived.

9 data tables match query

Measured values of the cross section times the branching ratio for the (Z0/GAMMA*) decay into hadrons within the restricted kinematic limits.

Differential cross-section dsig_ee/dm_qq.

Differential cross-section dsigma_ee/dsqrt(shat).

More…

Measurement of the hadronic cross-section for the scattering of two virtual photons at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 24 (2002) 17-31, 2002.
Inspire Record 563730 DOI 10.17182/hepdata.48895

The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.

11 data tables match query

Total cross section in the given phase space and assuming ALPHA = 1/137.

Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.

Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.

More…

Comparison of deep inelastic electron photon scattering data with the HERWIG and PHOJET Monte Carlo models.

The ALEPH & L3 & OPAL & LEP Working Group collaborations Achard, P. ; Andreev, V. ; Braccini, S. ; et al.
Eur.Phys.J.C 23 (2002) 201-223, 2002.
Inspire Record 535230 DOI 10.17182/hepdata.49877

Deep inelastic electron-photon scattering is studied in the Q**2 range from 1.2 to 30 GeV**2 using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models.

11 data tables match query

The individual differential cross sections (DSIG/DW) in the low Q**2 regions for the three experiments.. The data are corrected using the HERWIG-kt model.

The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the HERWIG-kt model.

The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the PHOJET model.

More…

Measurement of the hadronic photon structure function F2(gamma) at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 533 (2002) 207-222, 2002.
Inspire Record 583115 DOI 10.17182/hepdata.49744

The hadronic structure of the photon F2gamma is measured as a function of Bjorken x and of the photon virtuality Q2 using deep-inelastic scattering data taken by the OPAL detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F2gamma are extended to an average Q2 of <Q2>=780GeV2 using data in the kinematic range 0.15 < x < 0.98. The Q2 evolution of F2gamma is studied for 12.1 < <Q2> < 780GeV2 using three ranges of x. As predicted by QCD, the data show positive scaling violations in F2gamma for the central x region 0.10-0.60. Several parameterisations of F2gamma are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data.

13 data tables match query

F2 and DSIG/DX for the EE sample in the high Q**2 region as a function of X.

Statistical correlations between the bins in the preceding table.

The measured value of F2 and DSIG/DX for the SW data sample in the Q**2 range 9 to 15 GeV**2.

More…

Analysis of hadronic final states and the photon structure function F2(gamma) in deep inelastic electron photon scattering at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 33-48, 1997.
Inspire Record 426209 DOI 10.17182/hepdata.47770

Deep inelastic electron-photon scattering is studied in the Q2 ranges from 6 to 30 GeV2 and from 60 to 400 GeV2 using the full sample of LEP data taken with the OPAL detector at centre-of-mass energies close to the Z0 mass, with an integrated luminosity of 156.4 pb−1. Energy flow distributions and other properties of the measured hadronic final state are compared with the predictions of Monte Carlo models, including HERWIG and PYTHIA. Sizeable differences are found between the data and the models, especially at low values of the scaling variable x. New measurements are presented of the photon structure function $F_2^{αmma }(x,Q^2)$, allowing for the first time for uncertainties in the description of the final state by different Monte Carlo models. The differences between the data and the models contribute significantly to the systematic errors on $F_2^{αmma }$. The slope ${⤪ d}(F_2^{αmma }/←pha )/{⤪ d ln} Q^2$ is measured to be $0.13_{-0.04}^{+0.06}$.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the charm structure function F2(c)(gamma) of the photon at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 539 (2002) 13-24, 2002.
Inspire Record 587909 DOI 10.17182/hepdata.49793

The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b

3 data tables match query

The inclusive D* production cross section.

The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.

The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.


Production rates of b anti-b quark pairs from gluons and b anti-b b anti-b events in hadronic Z0 decays.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2001) 447-460, 2001.
Inspire Record 535059 DOI 10.17182/hepdata.49875

The rates are measured per hadronic Z decay for gluon splitting to bb(bar) quark pairs, g_bb, and of events containing two bb(bar) quark pairs, g_4b, using a sample of four-jet events selected from data collected with the OPAL detector. Events with an enhanced signal of gluon splitting to bb(bar) quarks are selected if two of the jets are close in phase-space and contain detached secondary vertices. For the event sample containing two bb(bar) quark pairs, three of the four jets are required to have a significantly detached secondary vertex. Information from the event topology is combined in a likelihood fit to extract the values of g_bb and g_4b, namely g_bb = (3.07 +- 0.53(stat) +- 0.97(syst))x10^-3 g_4b = (0.36 +- 0.17(stat) +- 0.27(syst))x10^-3

1 data table match query

No description provided.


Experimental studies of unbiased gluon jets from e+ e- annihilations using the jet boost algorithm

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Rev.D 69 (2004) 032002, 2004.
Inspire Record 631361 DOI 10.17182/hepdata.74246

We present the first experimental results based on the jet boost algorithm, a technique to select unbiased samples of gluon jets in e+e- annihilations, i.e. gluon jets free of biases introduced by event selection or jet finding criteria. Our results are derived from hadronic Z0 decays observed with the OPAL detector at the LEP e+e- collider at CERN. First, we test the boost algorithm through studies with Herwig Monte Carlo events and find that it provides accurate measurements of the charged particle multiplicity distributions of unbiased gluon jets for jet energies larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive unbiased measurements of the gluon jet multiplicity distribution for energies between about 5 and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with our earlier results at 40 GeV, we then test QCD calculations for the energy evolution of the distributions, specifically the mean and first two non-trivial normalized factorial moments of the multiplicity distribution, and the fragmentation function. The theoretical results are found to be in global agreement with the data, although the factorial moments are not well described for jet energies below about 14 GeV.

5 data tables match query

The charged particle multiplicity distribution of gluon jets, $n_{\rm gluon}^{\rm ch.}$, for $E_{\rm g}^*$$\,=\,$5.25, 5.98 and 6.98 GeV. The data have been corrected for detector acceptance and resolution, for event selection, and for gluon jet impurity.

The charged particle multiplicity distribution of gluon jets, $n_{\rm gluon}^{\rm ch.}$, for $E_{\rm g}^*$$\,=\,$8.43 and 10.92 GeV. The data have been corrected for detector acceptance and resolution, for event selection, and for gluon jet impurity.

The charged particle multiplicity distribution of gluon jets, $n_{\rm gluon}^{\rm ch.}$, for $E_{\rm g}^*$$\,=\,$14.24 and 17.72 GeV. The data have been corrected for detector acceptance and resolution, for event selection, and for gluon jet impurity.

More…

A Study of b quark fragmentation into B0 and B+ mesons at LEP

The OPAL collaboration Alexander, G. ; Allison, J. ; Altekamp, N. ; et al.
Phys.Lett.B 364 (1995) 93-106, 1995.
Inspire Record 400812 DOI 10.17182/hepdata.48093

A study of b quark fragmentation at LEP is presented using a sample of semileptonic B decays containing a fully reconstructed charm meson. The data are compared to several theoretical models for heavy quark fragmentation; the free parameters in these models are fitted and the sensitivity of the model parameters to the rate of P-wave B meson production is studied. The mean scaled energy fraction of B 0 and B + mesons has been determined to be < x E > = 0.695 ± 0.006 ± 0.003 ± 0.007, where the errors are statistical, systematic and model dependence respectively. This result is consistent with previous, less direct measurements from inclusive leptonic B decays. Also presented is a model independent fit to the shape of the energy distribution of weakly decaying B mesons at LEP.

1 data table match query

No description provided.


A study of spin alignment of rho(770)+- and omega(782) mesons in hadronic Z0 decays.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 16 (2000) 61-70, 2000.
Inspire Record 502750 DOI 10.17182/hepdata.49099

The helicity density matrix elements rho[00] of rho(770)+- and omega(782) mesons produced in Z decays have been measured using the OPAL detector at LEP. Over the measured meson energy range, the values are compatible with 1/3, corresponding to a statistical mix of helicity -1, 0 and +1 states. For the highest accessible scaled energy range 0.3 < x_E < 0.6, the measured rho[00] values of the rho(770)+- and the omega are 0.373 +- 0.052 and 0.142 +- 0.114, respectively. These results are compared to measurements of other vector mesons.

2 data tables match query

The errors are statistical and systematic unceratinties added in quadrature. The statistical errors (STAT=...) are also given.

The errors are statistical and systematic unceratinties added in quadrature. The statistical errors (STAT=...) are also given.


Charged multiplicities in Z decays into u, d, and s quarks.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 257-268, 2001.
Inspire Record 536266 DOI 10.17182/hepdata.49812

About 4.4 million hadronic decays of Z bosons, recorded by the OPAL detector at LEP at a centre-of-mass energy of around sqrt(s) = 91.2 GeV, are used to determine the mean charged particle multiplicities for the three light quark flavours. Events from primary u, d, and s quarks are tagged by selecting characteristic particles which carry a large fraction of the beam energy. The charged particle multiplicities are measured in the hemispheres opposite to these particles. An unfolding procedure is applied to obtain these multiplicities for each primary light quark flavour. This yields <n_u> = 17.77 +- 0.51 +0.86 -1.20, <n_d> = 21.44 +- 0.63 +1.46 -1.17, <n_s> = 20.02 +- 0.13 +0.39 -0.37, where statistical and systematic errors are given. The results for <n_u> and <n_d> are almost fully statistically anti-correlated. Within the errors the result is consistent with the flavour independence of the strong interaction for the particle multiplicities in events from the light up, down, and strange quarks.

2 data tables match query

No description provided.

No description provided.


A Study of charged particle multiplicities in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 53 (1992) 539-554, 1992.
Inspire Record 321190 DOI 10.17182/hepdata.14774

We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.

8 data tables match query

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.

Distribution for single hemisphere.

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.. Contributions from K0S and LAMBDA decays have been subtracted.

More…

QCD coherence studies using two particle azimuthal correlations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 58 (1993) 207-218, 1993.
Inspire Record 343082 DOI 10.17182/hepdata.14494

From a sample of 146900 hadronicZ0 decays recorded by the OPAL detector at LEP, we have studied the azimuthal correlations of particles in hadronic events. It is expected that these correlations are sensitive to interference effects in QCD. We have compared the data to QCD Monte Carlo models which include and which do not include interference effects. We find that the distributions of azimuthal correlations are not reproduced by the parton shower models we have tested unless interference effects are included, no matter which hadronisation scheme is used.

2 data tables match query

Corrected data for the EMMC.

Corrected data for the TPAC.


Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 388 (1996) 659-672, 1996.
Inspire Record 423486 DOI 10.17182/hepdata.47714

Gluon jets with about 39 GeV energy are identified in hadronic Z 0 decays by tagging two jets in the same hemisphere of an event as quark jets. Identifying the gluon jet to be all the particles observed in the hemisphere opposite to that containing the two tagged jets yields an inclusive gluon jet definition corresponding to that used in analytic calculations, allowing the first direct test of those calculations. In particular, this jet definition yields results which are only weakly dependent on a jet finding algorithm. We find r ch. =1.552±0.0041 ( stat ) ±0.061 ( syst. ) for the ratio of the mean charged particle multiplicity in gluon jets to that in light quark uds jets, where the uds jets are identified using an inclusive jet definition similar to that used for the gluon jets. Our result is in general agreement with the prediction of a recent analytic calculation which incorporates energy conservation into the parton shower branching processes, but is considerably smaller than analytic predictions which do not incorporate energy conservation.

2 data tables match query

Mean charged particle multiplicity in gluon jets.

Mean charged particle multiplicity in single hemisphere light quark jets.


Measurement of triple gauge boson couplings from W+ W- production at LEP energies up to 189-GeV

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 19 (2001) 1-14, 2001.
Inspire Record 533113 DOI 10.17182/hepdata.49847

A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110 +0.058 -0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their SM values. These results are consistent with the Standard Model expectations.

1 data table match query

Triple gauge boson couplings. All systematic errors are added in quadrature.


Intermittency in hadronic decays of the Z0

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 262 (1991) 351-361, 1991.
Inspire Record 314631 DOI 10.17182/hepdata.29397

A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.

3 data tables match query

Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.


A Study of D*+- production in Z0 decays

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 262 (1991) 341-350, 1991.
Inspire Record 315060 DOI 10.17182/hepdata.9272

In this paper an investigation of the production of D ∗ ± mesons produced in e + e − collisions at energies around the Z 0 pole is presented. Based on 115 D ∗ ± mesons with x D∗  2E D ∗ /E cm > 0.2 the properties of D ∗ mesons produced in the reaction Z 0 → c c are studied. Fixing the yield and the fragmentation function of bottom quarks to the values obtained at LEP using lepton tags, and average energy fraction of the D ∗ ± mesons from primary charmed quarks of 〈x c → D ∗ 〉 = 0.52 ± 0.03 +- 0.01 is found and Γ z 0 →c c = (323 ± 61 ± 35) MeV is determined. The first error is the combined statistical and systematic error from this experiment, and the second the total error from other sources.

2 data tables match query

FD denotes the fraction of D* mesons from primary charmed quarks, derived from the fit (see text).

No description provided.


The Forward - backward asymmetry of e+ e- ---> b anti-b and e+ e- ---> c anti-c using leptons in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Akers, R. ; Alexander, G. ; et al.
Z.Phys.C 60 (1993) 19-36, 1993.
Inspire Record 356097 DOI 10.17182/hepdata.14320

The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$

5 data tables match query

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.

Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.

Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.

More…

Measurement of the triple gauge boson coupling alpha (w phi) from W+ W- production in e+ e- collisions at s**(1/2) = 161-GeV

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 397 (1997) 147-157, 1997.
Inspire Record 440102 DOI 10.17182/hepdata.47516

This letter describes a measurement of one of the anomalous triple gauge boson couplings using the first data recorded by the OPAL detector at LEP2. A total of 28 W-pair candidates have been selected for an integrated luminosity of 9.89±0.06 pb −1 recorded at a centre-of-mass energy of 161 GeV. We use these data to place constraints upon the coupling parameter α W φ . We analyse the predicted variation of the total cross-section for all observed channels and the distribution of kinematic variables in the semileptonic decay channels. We measure α W φ to be −0.61 −0.61 0.73 ±0.35, which is consistent with the Standard Model expectation of zero.

1 data table match query

ALPHA-W-PHI is the triple gauge boson couplings (TGC). For definition see 'Physics at LEP2', Ed. G. Altarelli, CERN 96-01 (1996), vol. 1.


Measurement of the heavy quark forward - backward asymmetries and average B mixing using leptons in multi - hadronic events

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 70 (1996) 357-370, 1996.
Inspire Record 404106 DOI 10.17182/hepdata.48046

None

2 data tables match query

No description provided.

No description provided.


Measurement of the multiplicity of charm quark pairs from gluons in hadronic Z0 decays

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 353 (1995) 595-605, 1995.
Inspire Record 395451 DOI 10.17182/hepdata.48158

We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .

1 data table match query

Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).


Color reconnection studies in e+ e- --> W+ W- at s**(1/2) = 183-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 453 (1999) 153-168, 1999.
Inspire Record 482314 DOI 10.17182/hepdata.47315

The predicted effects of final state interactions such as colour reconnection are investigated by measuring properties of hadronic decays of W bosons, recorded at a centre-of-mass energy of sqrt(s)=182.7 GeV in the OPAL detector at LEP. Dependence on the modelling of hadronic W decays is avoided by comparing W+W- -> qqqq events with the non-leptonic component of W+W- -> qqlnu events. The scaled momentum distribution, its mean value, x_p, and that of the charged particle multiplicity, n_ch, are measured and found to be consistent in the two channels. The measured differences are: Diff(x_p) = +0.7 +- 0.8 +- 0.6 and Diff(n_ch) = (-0.09 +- 0.09 +-0.05)*10**-2. In addition, measurements of rapidity and thrust are performed for W+W- -> qqqq events. The data are described well by standard QCD models and disfavour one model of colour reconnection within the ARIADNE program. The current implementation of the ELLIS-GEIGER model of colour reconnection is excluded. At the current level of statistical precision no evidence for colour reconnection effects was found in the observables studied. The predicted effect of colour reconnection on OPAL measurements of M_W is also quantified in the context of models studied.

1 data table match query

Here Z is defined as Z = 2*P(C=HADRON)/SQRT(S).


A Measurement of the forward - backward charge asymmetry in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 294 (1992) 436-450, 1992.
Inspire Record 336774 DOI 10.17182/hepdata.29004

We present a measurement of the forward-backward charge asymmetry in hadronic decays of the Z 0 using data collected with the OPAL detector at LEP. The forward-backward charge asymmetry was measured using a weight function method which gave the number of forward events on a statistical basis. In a data sample of 448 942 hadronic Z 0 decays, we have observed a charge asymmetry of A h = 0.040±0.004 (stat.)±0.006 (syst.)±0.002 (B 0 B 0 mix.), taking into account the effect of B 0 B 0 mixing. In the framework of the standard model, this asymmetry corresponds to an effective weak mixing angle averaged over five quark flavours of sin 2 θ W = 0.2321 ± 0.0017 ( stat. ) ± 0.0027 ( syst. ) ± 0.0009 (B 0 B 0 mix.). The result agrees with the value obtained from the Z 0 line shape and lepton pair forward-backward asymmetry.

3 data tables match query

No description provided.

The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.

The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.