The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

3 data tables match query

No description provided.

2.2 GeV point taken from Brown et al., PR D31(85) 3017.

No description provided.


Spin Dependence of High p-Transverse**2 Elastic p p Scattering

Crabb, D.G. ; Fernow, Richard C. ; Hansen, P.H. ; et al.
Phys.Rev.Lett. 41 (1978) 1257, 1978.
Inspire Record 7117 DOI 10.17182/hepdata.20867

We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.

1 data table match query

THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).


Measurement of elastic proton proton scattering in pure initial-spin states

O' Fallon, J.R. ; Parker, E.F. ; Ratner, L.G. ; et al.
Phys.Rev.Lett. 32 (1974) 77-79, 1974.
Inspire Record 94699 DOI 10.17182/hepdata.21307

An experiment was done using an accelerated polarized proton beam and a polarized proton target. The elastic cross section for proton-proton scattering at 6.0 GeV/c and P⊥2=0.5−1.6 (GeV/c)2 was measured in the spin states ↑ ↑, ↓ ↓, and ↑ ↓ perpendicular to the scattering plane. The cross sections were found to be unequal by up to a factor of 2.

1 data table match query

No description provided.


Simultaneous Measurement of 2 and 3 Spins in Proton Proton Elastic Scattering at 6-GeV/c

Fernow, Richard C. ; Gray, S.W. ; Krisch, A.D. ; et al.
Phys.Lett.B 52 (1974) 243-246, 1974.
Inspire Record 89681 DOI 10.17182/hepdata.27931

The elastic cross section for proton proton scattering at 6 GeV c was measured using a 70% polarized beam and a 75% polarized target at the Argonne ZGS. In the range P ⊥ 2 = 0.5 → 2.0( GeV c ) 2 we obtained small error measurements for the ↑↑, ↓↓ and ↑↓ initial spin states perpendicular to the scattering plane. At P ⊥ 2 = 0.5 we also measured the recoil spin and found that the 5 different cross sections were very unequal.

2 data tables match query

No description provided.

No description provided.


Measurements of Spin Parameters in $p p$ Elastic Scattering at 6-{GeV}/$c$

Linn, S.L. ; Perlmutter, A. ; Crosbie, E.A. ; et al.
Phys.Rev.D 26 (1982) 550, 1982.
Inspire Record 11848 DOI 10.17182/hepdata.23900

We measured the differential cross section for proton-proton elastic scattering at 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P⊥2=1.6 (GeV/c)2. The spin-spin correlation parameter Ann exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90°c.m.. This sharp peak may be caused by particle-identity effects.

1 data table match query

No description provided.


Spin Spin Forces in 6-{GeV}/$c$ Neutron - Proton Elastic Scattering

Crabb, D.G. ; Hansen, P.H. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 43 (1979) 983, 1979.
Inspire Record 141922 DOI 10.17182/hepdata.20753

Measurement was made of dσdt for n↑+p↑→n+p at P⊥2=0.8 and 1.0 (GeV/c)2 at 6 GeV/c. The 6-GeV/c 53%-polarized neutrons from the 12-GeV/c polarized deuteron beam at the Argonne zero-gradient synchroton were scattered from our 75%-polarized proton target. Both spins were oriented perpendicular to the scattering plane. We found large unexpected spin-spin effects in n−p elastic scattering which are quite different from the p−p spin-spin effects.

1 data table match query

No description provided.


High (p-Transverse)**2 p p Elastic Scattering in Pure Initial Spin States

Miettinen, H.E. ; Abe, K. ; Fernow, Richard C. ; et al.
Phys.Rev.D 16 (1977) 549, 1977.
Inspire Record 5158 DOI 10.17182/hepdata.24479

We measured the cross section for proton-proton elastic scattering at 11.75 GeV/c using the Zero Gradient Synchrotron 52% polarized proton beam and a 60% polarized proton target. We measured dσdt(ij) in the ↑↑, ↓↓, and ↑↓ initial spin states perpendicular to the scattering plane in the range P⊥2=2.0−3.6 (GeV/c)2. We found that the asymmetry parameter A decreases smoothly with increasing P⊥2 in this range, and that the spin-spin correlation parameter Cnn may have a minimum near P⊥2=3 (GeV/c)2.

1 data table match query

No description provided.


Measurement of Proton Proton Elastic Scattering in Pure Initial Spin States at 11.75-GeV/c

Abe, K. ; Fernow, Richard C. ; Mulera, T.A. ; et al.
Phys.Lett.B 63 (1976) 239-244, 1976.
Inspire Record 114488 DOI 10.17182/hepdata.27638

The elastic cross section for proton proton scattering at 11.75 GeV/ c was measured at the Argonne ZGS using a 50% polarized target. In the range p ⊥ 2 =0.6 → 2.2 (GeV/ c ) 2 we obtained precise measurements of d σ d t(ij) for the ⇈ ⇊, and ⇅ initial spin states perpendicular to the scattering plane. We confirmed that the asymmetry parameter, A , decreases with energy in the diffraction peak, but is approximately energy-independent at large p ⊥ 2 . We found that the spin correlation parameter c nn acquires rather dramatic structure, and at large p ⊥ 2 seems to grow with energy.

1 data table match query

No description provided.


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table match query

No description provided.


Analyzing power measurements in high‐P2∥ p‐p elastic scattering

Raymond, R.S. ; Brown, K.A. ; Bruni, R.J. ; et al.
AIP Conf.Proc. 123 (1984) 1123-1125, 1984.
Inspire Record 201609 DOI 10.17182/hepdata.18612

The analyzing power in 28 GeV/c proton/proton elastic scattering was measured at P2∥=5.95 and 6.56 (GeV/c)2 using a polarized proton target and an unpolarized proton beam at the Brookhaven National Laboratory AGS. Results indicate that the analyzing power, A, is rising sharply with P2∥.

1 data table match query

No description provided.