Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
JHEP 09 (2012) 061, 2012.
Inspire Record 1120512 DOI 10.17182/hepdata.64899

Inclusive e\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.

3 data tables match query

The Neutral Current DSIG/DQ**2 for E+- P interactions with a beam polarisation of 0% as a function of Q^2 at Y<0.9.

The Combined HERA I+ II Neutral Current DSIG/DQ**2 for E+- P interactions with a beam polarisation of 0% as a function of Q^2 at Y<0.9.

The Combined HERA I+ II Neutral Current DSIG/DQ**2 for E+- P interactions with a beam polarisation of 0% as a function of Q^2 at Y<0.9.


Diffractive Dijet Photoproduction in ep Collisions at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 70 (2010) 15-37, 2010.
Inspire Record 857109 DOI 10.17182/hepdata.61487

Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb^-1. The events are of the type ep -> eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x_gamma of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models.

18 data tables match query

Total diffractive dijet positron-proton cross section integrated over the full measured kinematic range.

Bin averaged hadron level differential cross section for diffractive dijet production as a function of X(C=GAMMA). The first systematic error is the uncorrelated and the second the correlated uncertainty.

Bin averaged hadron level differential cross section for diffractive dijet production as a function of the ET of jet 1. The first systematic error is the uncorrelated and the second the correlated uncertainty.

More…

Deep inelastic inclusive and diffractive scattering at $Q^2$ values from 25 to 320 GeV$^2$ with the ZEUS forward plug calorimeter

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 800 (2008) 1-76, 2008.
Inspire Record 779854 DOI 10.17182/hepdata.11639

Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.

208 data tables match query

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 25 GeV**2.

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 35 GeV**2.

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 45 GeV**2.

More…

Diffractive Photoproduction of D*+/-(2010) at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 51 (2007) 301-315, 2007.
Inspire Record 747652 DOI 10.17182/hepdata.45627

Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.

12 data tables match query

Total cross section integrated over the given kinematic range.

Ratio of diffractive to inclusive D* cross section.

Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).

More…

Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 549-568, 2007.
Inspire Record 746380 DOI 10.17182/hepdata.45555

Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2&lt;0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4&lt;Q^2&lt;80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.

15 data tables match query

Differential cross section for DIS events as a function of Z_Pomeron.

Differential cross section for DIS events as a function of LOG10(X_Pomeron).

Differential cross section for DIS events as a function of W.

More…

Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|&lt;1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

22 data tables match query

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the complete ('all') data sample taken in 1997.

More…

Diffractive deep-inelastic scattering with a leading proton at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 749-766, 2006.
Inspire Record 718189 DOI 10.17182/hepdata.45891

The cross section for the diffractive deep-inelastic scattering process $ep \to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \xpom &lt;0.1 in fractional proton longitudinal momentum loss, 0.08 &lt; |t| &lt; 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 &lt; Q^2 &lt; 50 GeV^2 in photon virtuality and 0.004 &lt; \beta = x / \xpom &lt; 1, where x is the Bjorken scaling variable. For $\xpom \lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\rm d} \sigma / {\rm d} t \propto e^{6 t}$, independently of \xpom, \beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \xpom, \beta and Q^2. The \xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\alpha_{\pom}(0)=1.114 \pm 0.018 ({\rm stat.}) \pm 0.012 ({\rm syst.}) ^{+0.040}_{-0.020} ({\rm model})$ and a sub-leading exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q^2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.

60 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

8 data tables match query

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.

More…

Measurement of hadron and lepton-pair production in e+ e- collisions at s**(1/2) = 192-GeV - 208-GeV at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Eur.Phys.J.C 47 (2006) 1-19, 2006.
Inspire Record 704275 DOI 10.17182/hepdata.48637

Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.

11 data tables match query

Measured E+ E- --> E+ E- cross section for the inclusive data sample.

Measured E+ E- --> E+ E- cross section for the high-energy data sample.

Measured Forward-Backward asymmetry in E+ E- production for the inclusive data sample.

More…

Compton scattering of quasi-real virtual photons at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 616 (2005) 145-158, 2005.
Inspire Record 679959 DOI 10.17182/hepdata.48828

Compton scattering of quasi-real virtual photons, gamma e+- -> gamma e+-, is studied with 0.6fb-1 of data collected by the L3 detector at the LEP e+e- collider at centre-of-mass energies root(s')=189-209GeV. About 4500 events produced by the interaction of virtual photons emitted by e+- of one beam with e-+ of the opposite beam are collected for effective centre-of-mass energies of the photon-electron and photon-positron systems in the range from root(s')= 35GeV up to root(s')=175GeV, the highest energy at which Compton scattering was ever probed. The cross sections of the gamma e+- -> gamma e+- process as a function of root(s') and of the rest-frame scattering angle are measured, combined with previous L3 measurements down to root(s')~20GeV, and found to agree with the QED expectations.

3 data tables match query

Measured Compton scattering cross section as a function of the effective centre of mass of the photon-electron system. THETA(RF=CM) is the electron rest frame scattering angle.

The measured angular distribution over the photon-electron centre of mass energy range 35 to 175 GeV.

The measured Compton scattering cross section using the full data sample including the lower energy data from Acciarri et al. PL B439(1998)183. Errors are combined statistics and systematics.