We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.
Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.
No description provided.
No description provided.
SLOPE REFERS TO EXPONENTIAL FIT IN U.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
.
INTEGRATION OVER RANGE OF ABS(T) FROM 0 TO 1 GEV.
We report results from a measurement of the inclusive diffraction dissociation of photons on hydrogen, γp→Xp, in the range 75
4 GeV2. We test the finite-mass sum rule and, by comparing γp with π−p data obtained in the same apparatus, we test factorization.
EXTRACTED ELASTIC CROSS SECTIONS.
RESULTS OF EXPONENTIAL FITS TO ELASTIC CROSS SECTIONS.
DIFFERENTIAL CROSS SECTIONS FOR INELASTIC EVENTS.
None
FOR -T = 0.002 TO 0.05 GEV**2.
None
TWO-PARAMETER FIT TO SLOPE ALSO GIVEN IN PAPER.
No description provided.
The differential cross-sections for the elastic scattering of protons on deuterium have been measured at 600 MeV in the |t| range between 0.003 and 0.030 (GeV/c)2. The results are analysed by using the Bethe and Glauber formalisms taking into account spin effects in deuterium wave function and nucleon-nucleon amplitudes. The ratio between the real and the imaginary parts of the spin-independent protonneutron amplitude αpn deduced from dispersion calculations and phase shift analysis is compared with experimental results.
No description provided.
None
'1'.
Differential cross sections of p p forward elastic scattering were measured between 400 and 730 MeV/ c , and the real-to-imaginary ratio, ϱ, of the forward amplitude was deduced. We found that ρ increases from ∼ 0.1 to ∼ 0.4 in this momentum range. A dispersion-relation analysis shows the existence of a pole-like structure in the real part of the p p amplitude near threshold.
REAL/IMAG RATIO OF FORWARD AMPLITUDE DETERMINED FROM FIT TO COULOMB-NUCLEARINTERFERENCE.
The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.