Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.
No description provided.
No description provided.
SLOPE REFERS TO EXPONENTIAL FIT IN U.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
.
INTEGRATION OVER RANGE OF ABS(T) FROM 0 TO 1 GEV.
Cross-sections for diffractive particle production and pseudorapidity distributions of the decay products of diffractive states are presented. The data were obtained with the UA 5 streamer chamber detector at the CERNpp Collider operated in a new pulsed mode yieldingpp interactions at c.m. energies of 900 and 200 GeV. Data recorded with a special trigger designed to select a sample of events enriched in single-diffractive interactions clearly favour apt-limited fragmentation of diffractive states. The cross-section for single-diffractive particle production ϊ was found to be 7.8±0.5±1.1 mb at 900 GeV and 4.8±0.5±0.8 mb at 200 GeV (first error statistical, second systematic). From the pseudorapidity distribution of diffractive states we deduce the average number of charged particles to be 6.5±1.0 at 900 GeV and 4.1±1.1 at 200 GeV. Furthermore we report on our estimates for the cross-section of double-diffractive particle production at both Collider energies.
Single diffractive cross sections.
None
No description provided.
No description provided.
No description provided.
We have measured the total and subchannel cross sections for the reaction p¯p→p¯pπ+π− at 49 GeV/c. This reaction is dominated by two production mechanisms, diffraction and meson exchange. In addition, we have measured the total cross section for p¯p→p¯p2π+2π− and compared it to values at other momenta and with the corresponding pp interaction. Within the present statistics, no significant amount of exclusive annihilation is found into two, four, and six charged pions.
No description provided.
We report results from a measurement of the inclusive diffraction dissociation of photons on hydrogen, γp→Xp, in the range 75<pγ<148 GeV/c, 0.02<‖t‖<0.1 (GeV/c)2, and MX2/s<0.1. Our data show an exponential t dependence and a dominant 1/MX2 behavior for MX2>4 GeV2. We test the finite-mass sum rule and, by comparing γp with π−p data obtained in the same apparatus, we test factorization.
EXTRACTED ELASTIC CROSS SECTIONS.
RESULTS OF EXPONENTIAL FITS TO ELASTIC CROSS SECTIONS.
DIFFERENTIAL CROSS SECTIONS FOR INELASTIC EVENTS.
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
Errors contain both statistics and systematics.
The reaction γp→ρfast0pπ+π− has been studied with the linearly polarized 20-GeV monochromatic photon beam at the SLAC Hybrid Facility to test the prediction of s-channel helicity conservation in inelastic diffraction for t’<0.4 (GeV/c)2. In a sample of 1934 events from this reaction, the ρ0 decay-angular distributions and spin-density-matrix elements are consistent with s-channel helicity conservation, the π+π− mass shape displays the same skewing as seen in the reaction γp→pπ+π−, and the pπ+π− mass distribution compares well and scales according to the vector dominance model with that produced in π±p→πfast±pπ+π−.
No description provided.
We present experimental results on a number of K − p reactions at 14.3 GeV/ c that have three bodies in the final state. The final states are K − ω p , K − π p , Λπ + π − , Λ K + K − , Λp p , K ∗ − ω p , Λ(1520) K + K − and Λ(1520) p p . Whenever, with one exception explained by the Zweig rule, there is a K − or a proton in the final state, there is a diffractive-like threshold enhancement in the mass spectrum of the two recoiling particles. These enhancements account for a large fraction of the events in all but the Λπ + π − final state, where they cannot occur, and which is dominated by resonance production. We find evidence for the Q 1 (1300) decaying into K − ω .
THE DIFFRACTION DISSOCIATION CROSS SECTIONS ARE FOR DIFFRACTIVE THRESHOLD ENHANCEMENTS IN THE TWO-BODY MASS SPECTRA (WITHIN 500 MEV CM ENERGY OF THRESHOLD).
A search for charm production in the coherent diffractive dissociation reaction pSi→XSi was carried out for the modes D 0 → K − π + , D 0 → K − π + π + π − , and D + → K − π + π + . No charm signals were observed, and the 90% confidence level upper limit for coherent charm pair production was determined to be 26 μ b per silicon nucleus. The results are interpreted as an upper limit of 0.2% on the amount of intrinsic charm in the proton.
90 pct CL upper limits.