n p elastic spin transfer measurements at 485-MeV and 635-MeV

McNaughton, K.H. ; Ambrose, D.A. ; Coffey, P. ; et al.
Phys.Rev.C 46 (1992) 47-51, 1992.
Inspire Record 342389 DOI 10.17182/hepdata.26097

We have measured the spin-transfer parameters KLL, KSL, KLS, and KSS at 635 MeV from 50° to 178° c.m. and at 485 MeV from 74° to 176° c.m. These new data have a significant impact on the phase-shift analyses. There are now sufficient data near these energies to overdetermine the elastic nucleon-nucleon amplitudes.

2 data tables match query

Spin transfer parameters from np elastic scattering at 635 MeV. There is an additional overall normalisation of 2 PCT.

Spin transfer parameters from np elastic scattering at 485 MeV. There is an additional overall normalisation of 2 PCT.


The Spin Correlation Parameter and Analyzing Power in $n p$ Elastic Scattering at Intermediate-energies

Abegg, R. ; Ahmad, M. ; Bandyopadhyay, D. ; et al.
Phys.Rev.C 40 (1989) 2684-2696, 1989.
Inspire Record 281880 DOI 10.17182/hepdata.26220

In order to improve existing I=0 phase shift solutions, the spin correlation parameter ANN and the analyzing powers A0N and AN0 have been measured in n-p elastic scattering over an angular range of 50°–150° (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the P11, D23, and ε1 phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data (A0N and AN0) measured at 477 MeV in a different experiment over a limited angular range [60°–80° (c.m.)] are reported here.

10 data tables match query

The beam analysing power at incident kinetic energy 220 MeV. Additional systematic uncertainty of +- 0.015 and a scalar error of 3.5 PCT.

The beam analysing power at incident kinetic energy 325 MeV. Additional systematic uncertainty of +- 0.018 and a scalar error of 3.1 PCT.

The beam analysing power at incident kinetic energy 425 MeV. Additional systematic uncertainty of +- 0.022 and a scalar error of 3.3 PCT.

More…

A measurement of the spin correlation parameter C NN (θ) in n-p scattering at 181 MeV

Sowinski, J. ; Byrd, R.C. ; Jacobs, W.W. ; et al.
Phys.Lett.B 199 (1987) 341-345, 1987.
Inspire Record 1392688 DOI 10.17182/hepdata.30055

The spin correlation parameter C NN has been measured for n-p elastic scattering at 181 MeV. A comparison with predictions from various phase shift sets and potential models reveals sizeable deviations from the for the data Paris potential and Saclay phase shifts. For the Paris potential the deviations are directly related to an overprediction of the 3 D 2 phase shift parameter.

1 data table match query

Numerical values of data supplied by J. Sowinski.


Angular dependence of the spin correlation parameter A(oonn) in n p elastic scattering between 0.8-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 511-525, 1993.
Inspire Record 33733 DOI 10.17182/hepdata.36583

We present a total of 323 data points of the spin correlation parameter A oonn (np) in a large angular interval at eight energies between 0.8 and 1.1 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The present data are the first existing results above 0.8 GeV.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the spin correlation parameters A(00kk) and A(00sk) in n p elastic scattering at SATURNE-II

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 574 (1994) 697-715, 1994.
Inspire Record 383127 DOI 10.17182/hepdata.36564

We present a total of 191 and 203 data points of the elastic neutron-protonspin correlation parameters A ookk and A oosk , respectively. Both observables were measured in a large angular interval. The observable A ookk was measured from 0.312 to 1.10 GeV and A oosk from 0.80 to 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The beam polarization was oriented either along the beam direction or sideways, the target polarization was oriented longitudinally. Data are compared with phase-shift analyses predictions and with the PSI, LAMPF and SATURNE II results. Present results provide an important contribution to any future theoretical or phenomenological analysis.

14 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the Spin Correlation A(ookk) in $N P$ Elastic Scattering Between 0.63-{GeV} and 1.08-{GeV}

Ball, J. ; Lac, C.D. ; Lehar, F. ; et al.
Z.Phys.C 40 (1988) 193-197, 1988.
Inspire Record 269772 DOI 10.17182/hepdata.15598

We present the measurements of the spin correlation parameterAookk(np). A longitudinally polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the longitudinally polarized Saclay frozen-spin proton target. Measurements were carried out at SATURNE II, at neutron beam kinetic energies of 0.63, 0.88, 0.98 and 1.08 GeV. The data points cover the angular region from about 40° to 110° CM. The observed angular dependence ofAookk(np) at 0.63 GeV agree with the phase shift analysis predictions except at small angles.

4 data tables match query

First set of data is with neutron counter hodoscope. Second is using a charge-exchange in the carbon block.

No description provided.

No description provided.

More…

Determination of Proton Nucleon Analyzing Powers and Spin Rotation Depolarization Parameters at 500-{MeV}

Marshall, J.A. ; Barlett, M.L. ; Fergerson, R.W. ; et al.
Phys.Rev.C 34 (1986) 1433-1438, 1986.
Inspire Record 240068 DOI 10.17182/hepdata.26283

500 MeV p→+p elastic and quasielastic, and p→+n quasielastic, analyzing powers (Ay) and spin-rotation-depolarization parameters (DSS, DSL, DLS, DLL, DNN) were determined for center-of-momentum angular ranges 6.8°–55.4° (elastic) and 22.4°–55.4° (quasielastic); liquid hydrogen and deuterium targets were used. The p→+p elastic and quasielastic results are in good agreement; both the p→+p and p→+n parameters are well described by current phase shift solutions.

6 data tables match query

The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.

The spin depolarization and spin rotation parameters in 500 MeV P P elastic interactions. Additional normalization uncertainty of 1 PCT (2 PCT for DLL and DLS).

The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.

More…

THE ENERGY DEPENDENCE OF THE 90-degrees P P ELASTIC SCATTERING DEPOLARIZATION PARAMETER AND AMPLITUDES BETWEEN 0.9-GEV/C AND 1.5-GEV/C

Hollas, C.L. ; Cremans, D.J. ; Ransome, R.D. ; et al.
Phys.Lett.B 143 (1984) 343-346, 1984.
Inspire Record 208375 DOI 10.17182/hepdata.30531

The depolarization parameter D NN for pp elastic scattering at θ cm = 90 ° has been measured at twelve momenta between 0.9 and 1.5 GeV/ c . The moduli of the three transversity amplitudes T 1 , T 3 , and T 4 have been extracted from these data and from previous measurements of the differential cross section and spin correlation parameter A NN (90 °). Smooth energy dependence is found for all three amplitude moduli.

1 data table match query

Axis error includes +- 3/3 contribution (DUE TO UNCERTAINTIES IN THE TARGET ANALYSING POWER).


Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table match query

No description provided.


MEASUREMENT OF POLARIZATION PARAMETERS AND P P SCATTERING ANALYSIS AT 1.0-GeV

Vovchenko, V.G. ; Zhdanov, A.A. ; Kazarinov, Yu.M. ; et al.
LENINGRAD-84-995, 1984.
Inspire Record 208487 DOI 10.17182/hepdata.9315

None

2 data tables match query

No description provided.

No description provided.