Parity violation in proton proton scattering at 13.6-MeV

Eversheim, P.D. ; Schmitt, W. ; Kuhn, S.E. ; et al.
Phys.Lett.B 256 (1991) 11-14, 1991.
Inspire Record 318678 DOI 10.17182/hepdata.29488

Parity nonconservation in proton-proton scattering has been studied by measuring the angle-integrated longitudinal analyzing power A z . We found A z (13.6 MeV)=(−1.5±0.5)×10 −7 . The error includes uncertainties due to statistics and corrections, as well as upper limits on systematic effects. The experimental result is discussed with respect to recent theoretical calculations.

1 data table match query

No description provided.


Angular dependence of the beam and target analyzing powers a(oono) and A(ooon) in n p elastic scattering between 0.477-GeV and 0.940-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 477-488, 1993.
Inspire Record 33734 DOI 10.17182/hepdata.36610

We present a total of 273 independent data points of the analyzing powers A oono (nP) and A ooon (nP) in a large angular interval at four energies between 0.477 and 0.940 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. Part of the data was obtained with a CH 2 target. A comparison of the two measured observables allows one to determine the polarization of the neutron beam. The present results provide an important contribution to any future theoretical or phenomenological analysis.

8 data tables match query

No description provided.

No description provided.

Data from 97.7 to 123.4 degrees are combined beam and target analyzing powers.

More…

Angular dependence of analyzing power in n p elastic scattering between 0.312-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 489-510, 1993.
Inspire Record 341321 DOI 10.17182/hepdata.36590

We present a total of 427 np analyzing power data points in a large angular interval at 12 energies between 0.312 and 1.10 GeV. The SATURNE II polarized beam of free monochromatic neutrons was scattered either on the Saclay frozen-spin polarized proton target or on CH 2 and C targets. Present results are compared with existing elastic and quasieleastic data.

18 data tables match query

Results of the analyzing power for n p scattering at 0.312 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.363 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.800 GeV.

More…

Measurement of spin observables in neutron proton elastic scattering. I: Correlation parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 67-81, 2000.
Inspire Record 537914 DOI 10.17182/hepdata.43392

The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i

5 data tables match query

Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.

Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

Measurements of the spin correlation parameter CLL. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.

More…

Measurement of spin observables in neutron proton elastic scattering. II: Rescattering parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 83-95, 2000.
Inspire Record 537915 DOI 10.17182/hepdata.43295

A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran

10 data tables match query

Measurements of DNN with statistical errors only.

Measurements of DSL with statistical errors only.

Measurements of DSS with statistical errors only.

More…

Angular dependence of the spin correlation parameter A(oonn) in n p elastic scattering between 0.8-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 511-525, 1993.
Inspire Record 33733 DOI 10.17182/hepdata.36583

We present a total of 323 data points of the spin correlation parameter A oonn (np) in a large angular interval at eight energies between 0.8 and 1.1 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The present data are the first existing results above 0.8 GeV.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the spin correlation parameters A(00kk) and A(00sk) in n p elastic scattering at SATURNE-II

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 574 (1994) 697-715, 1994.
Inspire Record 383127 DOI 10.17182/hepdata.36564

We present a total of 191 and 203 data points of the elastic neutron-protonspin correlation parameters A ookk and A oosk , respectively. Both observables were measured in a large angular interval. The observable A ookk was measured from 0.312 to 1.10 GeV and A oosk from 0.80 to 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The beam polarization was oriented either along the beam direction or sideways, the target polarization was oriented longitudinally. Data are compared with phase-shift analyses predictions and with the PSI, LAMPF and SATURNE II results. Present results provide an important contribution to any future theoretical or phenomenological analysis.

14 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of the two and three spin index observables in n p elastic scattering between 0.8-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Z.Phys.C 61 (1994) 579-585, 1994.
Inspire Record 377674 DOI 10.17182/hepdata.14208

We present data of several rescattering observables measured inn p elastic scattering between 0.80 and 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the Saclay polarized frozen-spin proton target. Three different configurations of beam and target polarization directions were used: the observablesDonon andKonno were measured with the normal-normal spin configuration at eight energies;Nonkk,Dos″ok andKos″ko were determined with the longitudinal-longitudinal configuration at six energies;Nonsk,Dos″ok andKos″so with the sideway-longitudinal configuration at six energies. Part of the data was obtained with an unpolarized CH2 target where only the two spin-index polarization transfer parametersKos″ko andKos″so were determined. Data are compared with phase shift analyses predictions and with the LAMPF results at 0.788 GeV. Present results are the first measurements of rescattering observables above 0.80 GeV. They provide an important contribution to any future theoretical or phenomenological analysis.

20 data tables match query

No description provided.

No description provided.

No description provided.

More…

Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables match query

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

Energy dependence of the neutron proton total cross-section differences Delta (sigma-T) and Delta (sigma-L) between 0.31-GeV and 1.1-GeV

Fontaine, J.M. ; Kunne, F. ; Bystricky, J. ; et al.
Nucl.Phys.B 358 (1991) 297-310, 1991.
Inspire Record 320446 DOI 10.17182/hepdata.33013

Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.

4 data tables match query

Measurements of the tranverse cross section differences.

Measurements of the tranverse cross section differences.

Measurement of the longitudinal cross section difference.

More…

Measurements of the total cross-section difference Delta sigma-T in n p transmission between 0.86-GeV and 0.94-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Z.Phys.C 61 (1994) 53-58, 1994.
Inspire Record 353895 DOI 10.17182/hepdata.14263

We present results of the total cross section differenceΔσТ obtained in transmission measurements at the energies 0.86, 0.88, 0.91 and 0.94 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was transmitted through the polarized Saclay frozen-spin proton target. The beam and target polarizations were oriented in the vertical direction. The present results agree with previous SATURNE measurements and improve the amplitude analysis in the forward direction.

2 data tables match query

No description provided.

Average of this result and data from Fontaine et al. 1991, Nucl.Phys. B358, 297 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+2233> RED = 2233 </a>).


New Test of Nucleon-Nucleon Potential Models

Holslin, D. ; McAninch, J. ; Quin, P.A. ; et al.
Phys.Rev.Lett. 61 (1988) 1561-1564, 1988.
Inspire Record 945156 DOI 10.17182/hepdata.20124

We present new measurements of the analyzing power for np scattering at 10.03 MeV accurate to ± 1 × 10−3. A new source of systematic error, related to resonances in n−C12 scattering in the neutron detectors, is discussed. The interaction of the neutron magnetic moment with the Coulomb field of the proton is found to make a significant contribution to the analyzing power at the present level of accuracy. The results are compared to predictions of nucleon-nucleon potential models. New, improved values are reported for the p and d-wave spin-orbit phase-shift splittings.

1 data table match query

No description provided.


$A_y$ in n-d elastic scattering: a test for three-nucleon calculations

Brogli-Gysin, C. ; Campbell, J. ; Haffter, P. ; et al.
Phys.Lett.B 250 (1990) 11-14, 1990.
Inspire Record 1389638 DOI 10.17182/hepdata.29548

We have measured the analyzing power A y in n-d elastic scattering at 67.0 MeV. The experiment was based on the detection of recoil deuterons, allowing for a precise measurement of the backward angular range. The results are in good agreement with recent three-nucleon calculations which are based on the Paris and Bonn NN potentials.

1 data table match query

No description provided.


Backward n p scattering with a polarized target

Robrish, P.R. ; Chamberlain, O. ; Field, R.D. ; et al.
Phys.Lett.B 31 (1970) 617-620, 1970.
Inspire Record 63165 DOI 10.17182/hepdata.5937

We measured the polarization parameter P in neutron-proton elastic scattering near the backward direction, using a polarized proton target. Measurements covered the range of incident neutron momenta from 1.0 to 5.5 GeV/ c and of four-momentum transfer squared u from −0.005 to −0.5 (GeV/ c ) 2 .

4 data tables match query

'1'. '2'. '3'. '4'.

No description provided.

No description provided.

More…

Compton scattering of 3.5 gev polarized photons on protons

Buschhorn, G. ; Criegee, L. ; Franke, G. ; et al.
Phys.Lett.B 37 (1971) 211-212, 1971.
Inspire Record 69081 DOI 10.17182/hepdata.28375

Elastic scattering of linearly polarized photons on protons has been measured between 3.2 and 3.7 GeV for four-momentum transfers ranging from −0.1 to −0.7 (GeV/ c ) 2 . The observed cross section asymmetry in this range is consistent with zero within ±0.05.

1 data table match query

No description provided.


Proton-proton spin correlation measurements at 200 MeV with an internal target in a storage ring

Haeberli, W. ; Lorentz, B. ; Rathmann, F. ; et al.
Phys.Rev.C 55 (1997) 597-613, 1997.
Inspire Record 464240 DOI 10.17182/hepdata.25711

Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.

1 data table match query

No description provided.


Absolute measurement of the p+p analyzing power at 183 MeV

von Przewoski, B. ; Meyer, H.O. ; Pancella, P.V. ; et al.
Phys.Rev.C 44 (1991) 44-49, 1991.
Inspire Record 327386 DOI 10.17182/hepdata.26154

The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////).


Measurement of the polarization parameter in $\pi^{pm}p$ scattering from 356 to 519 MeV/c

Gorn, W. ;
LBL-1320, 1973.
Inspire Record 923202 DOI 10.17182/hepdata.1150

None

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…

Polarization in pi- p Elastic Scattering at 1180-MeV/c, 1250-MeV/c, and 1360-MeV/c

Barrelet, E. ; Chamberlain, O. ; Gorn, W. ; et al.
Phys.Rev.D 15 (1977) 2435, 1977.
Inspire Record 110059 DOI 10.17182/hepdata.24619

We have measured the polarization parameter in π−p elastic scattering at laboratory momenta of 1180, 1250, and 1360 MeV/c in the angular interval 65°<θc.m.<115°. The results were used to show that the polarized target used in these (and other similar) experiments was uniformly polarized. These measurements were also used to resolve pre-existing experimental discrepancies in the determination of the polarization parameter, and to clarify the behavior of scattering amplitudes in this energy range. We show that local measurements of this type are important in resolving discrete ambiguities affecting the energy continuation of the amplitudes. An important by-product of this experiment is the development of a fast method of reconstructing particle trajectories and fitting the elastic events, which could have a significant impact for future high-statistics experiments.

1 data table match query

No description provided.


Measurement of the analyzing power A(N) in p p elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target.

Okada, H. ; Alekseev, I.G. ; Bravar, A. ; et al.
2006.
Inspire Record 707803 DOI 10.17182/hepdata.41834

A precise measurement of the analyzing power $A_N$ in proton-proton elastic scattering in the region of 4-momentum transfer squared $0.001 < |t| < 0.032 ({\rm GeV}/c)^2$ has been performed using a polarized atomic hydrogen gas jet target and the 100 GeV/$c$ RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant $A_N$ of 4--5%, peaking at $-t \simeq 0.003 ({\rm GeV}/c)^2$. This kinematic region is known as the Coulomb Nuclear Interference region. A possible hadronic spin-flip amplitude modifies this otherwise calculable prediction. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude.

1 data table match query

Analysing power as a function of momentum transfer T. The first DSYS error is the systematic error, the second is the normalization error on the target polarization.


First measurement of A(N) at s**(1/2) = 200-GeV in polarized proton proton elastic scattering at RHIC.

Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 632 (2006) 167-172, 2006.
Inspire Record 688172 DOI 10.17182/hepdata.31570

We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.

1 data table match query

The single spin analyzing power for 3 T intervals.


Measurement of the Spin Correlation Parameters a(00kk), a(00ks) and a(00ss) in the p p Elastic Scattering Between 400-MeV and 600-MeV

Aprile, E. ; Hausammann, R. ; Heer, E. ; et al.
Phys.Rev.D 28 (1983) 21-39, 1983.
Inspire Record 162345 DOI 10.17182/hepdata.23773

We have measured the spin-correlation parameters A00kk, A00ks, and A00ss in p−p scattering between 400 and 600 MeV using a longitudinally polarized beam and a butanol target polarized in the horizontal plane. Owing to the restrictive geometrical acceptance of the target, the polarization axis of the target was oriented at an angle α with respect to beam direction. The parameters A00kk and A00ks were therefore measured as a linear combination at 577, 536, 514, 494, and 445 MeV. These experiments were extended to the measurement of A00ks and A00ss by using a transversely polarized beam. We present the results, which are compared with phase-shift predictions.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of Spin Spin Correlation Parameters Up to 2.5-{GeV}/$c$ Incident Momentum for a Decisive Clarification of the Structure Observed in the $p p$ System

Auer, I.P. ; Colton, E. ; Ditzler, W.R. ; et al.
Phys.Rev.Lett. 51 (1983) 1411, 1983.
Inspire Record 191101 DOI 10.17182/hepdata.20512

Recent data are presented on spin-spin correlation parameters CLL=(L,L;0,0) and CSL=(S,L;0,0) at forward angles from 1.18 to 2.47 GeV/c incident momenta in proton-proton elastic scattering. Values for ΔσL (inelastic) are derived and are shown to disagree with predictions of theoretical models attempting to describe p−p scattering without dibaryon resonances. Finally, the CLL and CSL data discriminate among various phase-shift solutions, and will lead to a clarification of the p−p phase shifts.

2 data tables match query

No description provided.

No description provided.


Measurement of spin correlation parameters A(NN), A(SS), and A(SL) at 2.1-GeV in proton proton elastic scattering.

Bauer, F. ; Bisplinghoff, J. ; Busser, K. ; et al.
Phys.Rev.Lett. 90 (2003) 142301, 2003.
Inspire Record 594512 DOI 10.17182/hepdata.31721

At the Cooler Synchrotron COSY/J\ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for A$_{NN}$, A$_{SS}$, and A_${SL}$ for c.m. scattering angles between 30$^o$ and 90$^o$. Our data on A$_{SS}$ -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while A$_{NN}$ and A_${SL}$ are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.

1 data table match query

Spin correlation parameters.