A Study of $K^+ p$ Elastic Scattering and the Reaction $K^+ p \to K^+ p \pi^+ \pi^-$ at 70-{GeV}/$c$

The Brussels-Genoa-Mons-Nijmegen-Serpukhov-CERN collaboration Barth, M. ; Wolf, A.E. De ; Johnson, D.P. ; et al.
Z.Phys.C 16 (1982) 111, 1982.
Inspire Record 181354 DOI 10.17182/hepdata.41205

Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the

5 data tables match query

INTEGRATION OVER RANGE OF ABS(T) FROM 0 TO 1 GEV.

More…

Some Three-Body Final States in K- p Reactions at 14.3-GeV/c

Wohl, C.G. ; Barloutaud, R. ; Borg, A. ; et al.
Nucl.Phys.B 132 (1978) 401-428, 1978.
Inspire Record 5385 DOI 10.17182/hepdata.35160

We present experimental results on a number of K − p reactions at 14.3 GeV/ c that have three bodies in the final state. The final states are K − ω p , K − π p , Λπ + π − , Λ K + K − , Λp p , K ∗ − ω p , Λ(1520) K + K − and Λ(1520) p p . Whenever, with one exception explained by the Zweig rule, there is a K − or a proton in the final state, there is a diffractive-like threshold enhancement in the mass spectrum of the two recoiling particles. These enhancements account for a large fraction of the events in all but the Λπ + π − final state, where they cannot occur, and which is dominated by resonance production. We find evidence for the Q 1 (1300) decaying into K − ω .

1 data table match query

THE DIFFRACTION DISSOCIATION CROSS SECTIONS ARE FOR DIFFRACTIVE THRESHOLD ENHANCEMENTS IN THE TWO-BODY MASS SPECTRA (WITHIN 500 MEV CM ENERGY OF THRESHOLD).


DIFFRACTIVE K0 LAMBDA0 PRODUCTION BY NEUTRONS WITH 40-GeV/c MEAN MOMENTUM

The BIS-2 collaboration Aleev, A.N. ; Arefev, V.A. ; Balandin, V.P. ; et al.
PHE 83-1, 1983.
Inspire Record 190017 DOI 10.17182/hepdata.31222

None

1 data table match query

No description provided.


THE REACTION K- n ---> K- pi+ pi- n AT 12-GeV/c

Lucas, P. ; Bachman, L. ; Chien, C.-Y. ; et al.
Nucl.Phys.B 133 (1978) 365-396, 1978.
Inspire Record 6743 DOI 10.17182/hepdata.35142

The reaction K − n → K − π + π − n has been studied in the SLAC 82″ liquid deuterium bubble chamber with a beam momentum of 12 GeV/ c . Although the kinematic fit for this final state has only one constraint, nonetheless a reasonably pure sample has been obtained. The cross section for the reaction is 1.02 ± 0.10 mb. The process K − n → K ∗0 890 Δ − is observed with cross section 36 ± 9 μ b and t -slope of 10 ± 2 (GeV/ c ) −2 . A kaon diffraction dissociation sample has been obtained, although the Q-signal is not so strong as in experiments with proton targets. Neutron dissociation into n π + π − is also observed with similar properties to those of proton dissociation into p π + π − , but with a broader t -distribution.

1 data table match query

BEAM AND TARGET DIFFRACTION DISSOCIATION DATA ARE REPORTED.


Diffractive Production of $K^0_s K^0_s \pi^+ \pi^- \pi^-$ in $\pi^-N$ Interactions at 200-GeV/c

Chang, C.C. ; Davis, T.C. ; Diamond, R.N. ; et al.
Phys.Rev.D 29 (1984) 1888-1894, 1984.
Inspire Record 194648 DOI 10.17182/hepdata.23730

The diffractive dissociation of a 200-GeV/c π− beam into KS0KS0π+π−π− has been observed. The diffractive KS0KS0π+π−π− cross section is 1.59±0.78 μb. The ratio of the diffractive KS0KS0π+π−π− cross section to the diffractive KS0KS0π− cross section is 0.40±0.13, which is in good agreement with a diffractive-fragmentation-model prediction of 0.36. There is evidence for simultaneous production of K*− and K*+ in the diffractive KS0KS0π+π−π− sample. The K*+−KS0π−+ mass distribution shows an enhancement near 1.95 GeV.

3 data tables match query

No description provided.

No description provided.

No description provided.


PARTIAL WAVE ANALYSIS OF THE K+ PI+ K- SYSTEM SEEN IN THE REACTION PI+ P ---> K+ PI+ K- P AT 11.46-GeV/c

Leedom, I.D. ; DeBonte, R.J. ; Gaidos, J.A. ; et al.
Phys.Rev.D 27 (1983) 1426, 1983.
Inspire Record 194990 DOI 10.17182/hepdata.23837

We present results of a hybrid-bubble-chamber experiment examining the reaction π+p→π+pK+K− at an incident momentum of 11.46 GeV/c. The total cross section for this channel is determined to be 87.2±6.4 μb. A partial-wave analysis of the K+π+K− system reveals no unambiguous evidence of resonant activity, although mass enhancements are noted in the JP=0− κ¯K+ (S wave), JP=2− fπ (S wave), and JP=2−, K¯*0(892)K+ (P wave). This is the first published report of the relative phases of the waves seen in this reaction. We comment on the influence this channel may have on A1 and A3 production.

3 data tables match query

No description provided.

No description provided.

PW INTENSITIES AND PHASE SHIFTS.


STUDY OF REACTIONS K+ p ---> K0 2 pi+ pi- p, K+ p ---> K0 3 pi+ 2 pi- p AND THEIR DIFFRACTIVE DISSOCIATION CHANNELS AT 32-GeV/c

Gerdyukov, L.N. ; Makharadze, T.G. ; Tomaradze, A.G. ; et al.
IFVE-87-60, 1987.
Inspire Record 249415 DOI 10.17182/hepdata.40757

None

1 data table match query

No description provided.


Partial Wave Analysis of the (anti-K0 pi- pi0)-System Produced in the q-Mass Region in K- p --> (anti-K0 pi- pi0) p at 10-GeV/c and 16-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Otter, G. ; Barnham, Keith W J ; Cocconi, Vanna T ; et al.
Nucl.Phys.B 96 (1975) 29-44, 1975.
Inspire Record 98691 DOI 10.17182/hepdata.31971

A partial-wave analysis has been performed of the diffractively produced low-mass ( K ̄ 0 π − π 0 ) system in the reaction K − p → ( K ̄ 0 π − π 0 ) p at 10 and 16 GeV/ c . Thus information complementary to that derived from the K − p → (K − π + π − )p) channel is obtained. The presence of the K ϱ decay mode, besides the dominant K ∗ (890)π mode, for the state J P = 1 + , is confirmed. It is also confirmed that for this 1 + state the assumption of factorization of the amplitude into “production” and “decay” does not hold: the two decay modes K ∗ π and K ϱ have different polarisation properties (helicity is approximately conserved in the t -channel for the first, in the s -channel for the second). The assumption that the ( K ̄ 0 π − π 0 ) system has isospin I = 1 2 has been tested and found to hold. From the cross sections for the various J P states, assuming I = 1 2 , the cross sections for the (K − π + π − ) system are predicted and compared with the experimental ones. In general, agreement is found.

1 data table match query

No description provided.


Evidence for Different Polarization Properties of the rho K and K* (890) pi States of the 1+ Wave in the Q Region

The Aachen-Berlin-CERN-London-Vienna collaboration Otter, G. ; Rudolph, G. ; Rumph, K. ; et al.
Nucl.Phys.B 93 (1975) 365-386, 1975.
Inspire Record 99251 DOI 10.17182/hepdata.32005

A partial-wave analysis has been performed on the (K − π − π + ) system produced in the reaction K − p → K − π − π + p at 10 and 16 GeV/ c . In the Q mass region it is found that the two dominant states, K ∗ π and Kπ, both in 1 + S wave, are produced with different polarisations, helicity being approximately conserved in the t -channel for K ∗ π and in the s -channel for Kπ. This is in contradiction with the assumption that the amplitude can be factorised into “production” and “decay” parts, and hence that the two amplitudes are fully coherent. The phase variation of the two states do not indicate simple resonance behaviour. It is concluded that the Q-mass enhancement is composite.

1 data table match query

No description provided.


Kaon production in <math altimg="si1.gif"><ovl type="bar" style="s">p</ovl>p</math> reactions at a centre-of-mass energy of 540 GeV

The Bonn UA5 & Brussels UA5 & Cambridge UA5 & CERN UA5 & Stockholm UA5 collaborations Alner, G.J. ; Alpgard, K. ; Anderer, P. ; et al.
Nucl.Phys.B 258 (1985) 90624 505-539, 1985.
Inspire Record 214234 DOI 10.17182/hepdata.8127

Using the UA5 detector, the inclusive central production of Ks<sup loc="post">0</sup> and K<sup loc="post">±</sup> mesons has been measured in non-single-diffractive interactions at the CERN SPS <math altimg="si1.gif"><ovl type="bar" style="s">p</ovl>p</math> Collider at a c.m. energy of 540 GeV. The average transverse momentum is found to be 〈pT〉 = 0.57±0.03 GeV/c in the rapidity range |y|<2.5, which is an increase of about 30% over the top ISR energy. The K/π ratio has increased from about 8% at ISR energies to 9.5±0.9±0.7% (the last error is systematic) at 540 GeV. The average number of Ks<sup loc="post">0</sup> per non-single-diffractive event is 1.1±0.1 and the inclusive inelastic cross section is estimated at 49±5 mb.

1 data table match query

NON SINGLE DIFFRACTION CROSS SECTION.