Experimental Study of the Reactions $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \gamma \gamma$ at 29-{GeV}

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Rev.D 34 (1986) 3286, 1986.
Inspire Record 18585 DOI 10.17182/hepdata.23442

This paper reports measurements of the differential cross sections for the reactions e+e−→e+e− (Bhabha scattering) and e+e−→γγ (γ-pair production). The reactions are studied at a center-of-mass energy of 29 GeV and in the polar-angular region ‖costheta‖<0.55. A direct cross-section comparison between these two reactions provides a sensitive test of the predictions of quantum electrodynamics (QED) to order α3. When the ratio of γ-pair to Bhabha experimental cross sections, integrated over ‖costheta‖<0.55, is divided by the same ratio predicted from α3 QED theory, the result is 1.007±0.009±0.008. The 95%-confidence limits on the QED-cutoff parameters are Λ+>154 GeV and Λ−>220 GeV for Bhabha scattering, and Λ+>59 GeV and Λ−>59 GeV for γ-pair production.

1 data table match query

No description provided.


New Results From Bhabha Scattering at 29-{GeV}

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Lett.B 166 (1986) 463-467, 1986.
Inspire Record 17511 DOI 10.17182/hepdata.6636

Results are reported on a high statistics study of Bhabha scattering at 29 GeV in the polar angle region, |cos θ | < 0.55. The data are consistent with the standard model, and measure vector and axial-vector coupling constants of g v 2 = 0.03 ± 0.09 and g a 2 = 0.46±0.14. Limits on the QED-cutoff parameters are Λ + > 154 GeV and Λ - > 220 GeV. Lower limits on scale parameters of composite models are in the range 0.9–2.8 TeV. The partial width of a hypothetical spin-zero boson decaying to e + e − has an upper limit which varies from 6 to 57 MeV corresponding to a boson mass in the range 45–80 GeV/ c 2 .

1 data table match query

No description provided.


Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

1 data table match query

Comparison of Bhabhas with QED.