High (p-Transverse)**2 p p Elastic Scattering in Pure Initial Spin States

Miettinen, H.E. ; Abe, K. ; Fernow, Richard C. ; et al.
Phys.Rev.D 16 (1977) 549, 1977.
Inspire Record 5158 DOI 10.17182/hepdata.24479

We measured the cross section for proton-proton elastic scattering at 11.75 GeV/c using the Zero Gradient Synchrotron 52% polarized proton beam and a 60% polarized proton target. We measured dσdt(ij) in the ↑↑, ↓↓, and ↑↓ initial spin states perpendicular to the scattering plane in the range P⊥2=2.0−3.6 (GeV/c)2. We found that the asymmetry parameter A decreases smoothly with increasing P⊥2 in this range, and that the spin-spin correlation parameter Cnn may have a minimum near P⊥2=3 (GeV/c)2.

1 data table match query

No description provided.


Measurement of Proton Proton Elastic Scattering in Pure Initial Spin States at 11.75-GeV/c

Abe, K. ; Fernow, Richard C. ; Mulera, T.A. ; et al.
Phys.Lett.B 63 (1976) 239-244, 1976.
Inspire Record 114488 DOI 10.17182/hepdata.27638

The elastic cross section for proton proton scattering at 11.75 GeV/ c was measured at the Argonne ZGS using a 50% polarized target. In the range p ⊥ 2 =0.6 → 2.2 (GeV/ c ) 2 we obtained precise measurements of d σ d t(ij) for the ⇈ ⇊, and ⇅ initial spin states perpendicular to the scattering plane. We confirmed that the asymmetry parameter, A , decreases with energy in the diffraction peak, but is approximately energy-independent at large p ⊥ 2 . We found that the spin correlation parameter c nn acquires rather dramatic structure, and at large p ⊥ 2 seems to grow with energy.

1 data table match query

No description provided.


Energy Dependence of Spin Spin Forces in 90-degrees (Center-of-mass) Elastic $p p$ Scattering

Lin, A. ; O'Fallon, J.R. ; Ratner, L.G. ; et al.
Phys.Lett.B 74 (1978) 273-276, 1978.
Inspire Record 129169 DOI 10.17182/hepdata.27461

We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .

2 data tables match query

ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.

THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table match query

No description provided.


Measurement of the polarization parameter in pi+- p, k+- p, p p, and anti-p p elastic scattering at 6 gev/c

Borghini, M. ; Dick, L. ; Di Lella, L. ; et al.
Phys.Lett.B 31 (1970) 405-409, 1970.
Inspire Record 63191 DOI 10.17182/hepdata.6078

Experimental results are presented for the polarization parameter P 0 in π ± p , K ± p , pp, and p ̄ p elastic scattering at 6 GeV/ c , and in the range of the invariant four-momentum transfer squared − t from 0.05 to ∼ 2.0 (GeV/ c ) 2 .

2 data tables match query

'1'. '2'. '3'. '4'.

No description provided.


Polarization in p p Elastic Scattering at Small |t|

Klem, R.D. ; Courant, H.W. ; Lee, J. ; et al.
Phys.Rev.D 15 (1977) 602-603, 1977.
Inspire Record 124114 DOI 10.17182/hepdata.24547

We have measured the polarization parameter for proton-proton elastic scattering at p0 = 6 GeV/c for |t|<0.5 (GeV/c)2 using the polarized proton beam at the Argonne Zero Gradient Synchrotron. These data, together with all previous measurements in this t region, are well fitted by the empirical relation P = (0.481±0.010)(−t)12exp(2.291±0.085)t.

1 data table match query

No description provided.


Large angle elastic proton proton polarization at 5.15 gev/c

Abshire, G.W. ; Ankenbrandt, C.M. ; Crittenden, R.R. ; et al.
Phys.Rev.D 9 (1974) 555-559, 1974.
Inspire Record 93113 DOI 10.17182/hepdata.21953

We present herein the initial results of a large-angle elastic p−p polarization experiment which is now in progress at the Argonne ZGS (Zero-Gradient Synchrotron) accelerator. Data for the incident proton momentum of 5.15 GeVc are presented for 30∘≲θc.m.≲90∘. These results, which extend to t≈−4.0(GeVc)2, represent the first high-statistics p−p polarization measurements for |t| values greater than ∼2.5 (GeVc)2. We observe a minimum in the polarization near t=−0.8(GeVc)2, a smooth increase in the polarization until a maximum is attained near t=−1.8(GeVc)2, and then a monotonic decline in the polarization until the value of zero is reached at θc.m.=90∘. The data are analyzed in terms of an optical model.

1 data table match query

No description provided.


Analyzing power measurement of p p elastic scattering in the Coulomb - nuclear interference region with the 200-GeV/c polarized proton beam at Fermilab

The E581/704 collaboration Akchurin, N. ; Langland, J. ; Onel, Y. ; et al.
Phys.Rev.D 48 (1993) 3026-3036, 1993.
Inspire Record 364576 DOI 10.17182/hepdata.22670

The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.

1 data table match query

No description provided.


Polarization structure in p-p elastic scattering,

Abshire, G.W. ; Ankenbrandt, C.M. ; Crittenden, R.R. ; et al.
Phys.Rev.Lett. 32 (1974) 1261-1264, 1974.
Inspire Record 94365 DOI 10.17182/hepdata.21335

We present here the results of an experiment to study the polarization in p−p elastic scattering at the incident momenta 5.15, 7.00, and 12.33 Ge V/c, at t values ranging between - 0.5 and - 6.5 (GeV/c)2. At each momentum we observe a relative maximum in the polarization around t=−1.8 (GeV/c)2. At 12.33 GeV/c the data exhibit a double zero near t=−2.4 (GeV/c)2 and another relative maximum near t=−2.9 (GeV/c)2. The results are discussed in terms of the Chu-Hendry optical model.

3 data tables match query

No description provided.

No description provided.

No description provided.


ANALYZING POWER IN LARGE ANGLE PROTON NEUTRON ELASTIC SCATTERING

Makdisi, Y. ; Marshak, M.L. ; Mossberg, B. ; et al.
Phys.Rev.Lett. 45 (1980) 1529-1533, 1980.
Inspire Record 159455 DOI 10.17182/hepdata.20701

The large-angle analyzing power A in proton-neutron elastic scattering at 2, 3, and 6 GeV/c with use of the polarized proton beam at the Argonne zero-gradient synchrotron and a liquid deuterium target have been measured. The measurements, the first at high energy, show that A is large (20-40%) and negative over much of the angular range and shows no decrease with incident energy, unlike the earlier data at smaller angles.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…