Forward angle pi+- p elastic scattering differential cross-sections at T(pi) = 87-MeV to 139-MeV

Brack, J.T. ; Amaudruz, P.A. ; Ottewell, D.F. ; et al.
Phys.Rev.C 51 (1995) 929-936, 1995.
Inspire Record 400646 DOI 10.17182/hepdata.25894

Absolute π±p elastic scattering differential cross sections have been measured at five incident pion energies between 87 and 139 MeV. An active target of scintillator material (CH1.1) was used to detect recoil protons in coincidence with scattered pions. Pions were detected at forward angles between 27 and 98°c.m. where the low-energy recoil protons stop in the target. The cross sections, typically 5–10% lower than phase shift predictions for π+p and 10–20% lower for the π−p cross sections, are consistent with earlier measurements by this group.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Scattering of 151- and 188-Mev Positive Pions by Protons

Homa, George ; Goldhaber, Gerson ; Lederman, Leon M. ;
Phys.Rev. 93 (1954) 554-561, 1954.
Inspire Record 944934 DOI 10.17182/hepdata.26417

A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).