Analyzing power measurements in high‐P2∥ p‐p elastic scattering

Raymond, R.S. ; Brown, K.A. ; Bruni, R.J. ; et al.
AIP Conf.Proc. 123 (1984) 1123-1125, 1984.
Inspire Record 201609 DOI 10.17182/hepdata.18612

The analyzing power in 28 GeV/c proton/proton elastic scattering was measured at P2∥=5.95 and 6.56 (GeV/c)2 using a polarized proton target and an unpolarized proton beam at the Brookhaven National Laboratory AGS. Results indicate that the analyzing power, A, is rising sharply with P2∥.

1 data table match query

No description provided.


Elastic Scattering of $p^\pm$, $\pi^\pm$ and $K^\pm$ on Protons at High-energies and Small Momentum Transfer

Cool, R.L. ; Goulianos, Konstantin A. ; Segler, S.L. ; et al.
Phys.Rev.D 24 (1981) 2821, 1981.
Inspire Record 156145 DOI 10.17182/hepdata.24029

We report on a measurement of elastic differential cross sections for p±p, π±p, and K±p at 100 and 200 GeV/c in the range 0.03<|t|<0.10 (GeV/c)2. Our data display a simple exponential dependence which is consistent with other measurements in this t region or with extrapolations from higher t.

2 data tables match query

No description provided.

No description provided.


Small Angle Elastic Proton Proton Scattering from 25-GeV to 200-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 29 (1972) 1755-1758, 1972.
Inspire Record 73778 DOI 10.17182/hepdata.21428

We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.

1 data table match query

No description provided.


Real Part of the Proton-Proton Forward Scattering Amplitude from 50-GeV to 400-GeV.

Bartenev, V. ; Carrigan, Richard A. ; Chiang, I-Hung ; et al.
Phys.Rev.Lett. 31 (1973) 1367-1370, 1973.
Inspire Record 81733 DOI 10.17182/hepdata.21379

From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.

1 data table match query

No description provided.


Measurement of the Slope of the Diffraction Peak for Elastic pp Scattering from 8-GeV to 400-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1088-1091, 1973.
Inspire Record 81722 DOI 10.17182/hepdata.21381

The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.

1 data table match query

MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.


Measurement of the Real Part of the Proton Proton Forward Scattering Amplitude from 80-GeV to 286-GeV by Means of Silicon Position Sensitive Detectors

Bartenev, V. ; Carrigan, Richard A. ; Cool, R.L. ; et al.
Sov.J.Nucl.Phys. 23 (1976) 400, 1976.
Inspire Record 100255 DOI 10.17182/hepdata.19082

None

1 data table match query

THE ERRORS INCLUDE THE UNCERTAINTIES IN THE FIT PARAMETERS SLOPE AND SIG, WHILE THE PURELY STATISTICAL ERRORS ARE ALSO GIVEN.


Pi- p Interactions at 360-GeV/c: Measurement of the Total and Elastic Cross-Sections and the Charged Particle Multiplicity Distribution

Firestone, A. ; Anderson, E.W. ; Chang, V. ; et al.
Phys.Rev.D 14 (1976) 2902, 1976.
Inspire Record 3926 DOI 10.17182/hepdata.24670

In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.

2 data tables match query

SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.

FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.


Charged-Particle Multiplicities in 100-GeV/c anti-p p Interactions

Ansorge, R.E. ; Bust, C.P. ; Carter, J.R. ; et al.
Phys.Lett.B 59 (1975) 299-302, 1975.
Inspire Record 2603 DOI 10.17182/hepdata.27765

Results are presented on the topological cross sections obtained for antiproton-proton interactions from an exposure of the Fermilab 30-inch bubble chamber to a 100 GeV/ c negative beam enriched in p 's. The p p inelastic cross section is found to be σ inel = 34.6 ± 0.4 mb, and the average inelastic charged particle multiplicity to be 〈 n 〉 = 6.74 ± 0.05.

1 data table match query

EXPONENTIAL FIT TO ELASTIC T DISTRIBUTION TO CORRECT FOR AN APPARENT LOSS OF EVENTS AT SMALL -T.


Elastic Scattering Crossovers from 50-GeV to 175-GeV

The Fermilab Single Arm Spectrometer Group collaboration Anderson, R.L. ; Anelli, E.F. ; Ayres, D.S. ; et al.
Phys.Rev.Lett. 37 (1976) 1025, 1976.
Inspire Record 108810 DOI 10.17182/hepdata.21092

A comparison of K±p and p±p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19±0.04 and 0.11±0.02 GeV2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively.

1 data table match query

KP AND PP CROSSOVER POINTS AT -T = 0.19 +- 0.04 AND 0.11 +- 0.02 GEV**2 (AVERAGE VALUES) RESPECTIVELY.


$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…