A Comparison of the Shapes of pi+ p and p p Diffraction Peaks from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, Robert E. ; Maclay, G.J. ; et al.
Phys.Rev.Lett. 37 (1976) 548, 1976.
Inspire Record 108238 DOI 10.17182/hepdata.21073

The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.

1 data table match query

ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.


$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…

Multiplicity of Charged Particles in 800-{GeV} $p p$ Interactions

The LEBC-MPS collaboration Ammar, R. ; Aziz, T. ; Banerjee, S. ; et al.
Phys.Lett.B 178 (1986) 124-128, 1986.
Inspire Record 231133 DOI 10.17182/hepdata.6558

Results are reported concerning the charged-particle multiplicity distribution obtained in an exposure of the high-resolution hydrogen bubble chamber LEBC to a beam of 800 GeV protons at the Fermilab MPS. This is the first time that such data have been available at this energy. The distribution of the number n ch of charged particles produced in inelastic interactions obeys KNO-scaling. The average multiplicity is 〈 n ch 〉 = 10.26±0.15. For n ch ⩾8 the data can be well fitted to a negative binomial. The difference between the overall experimental multiplicity distribution and that resulting from the latter fit is in agreement with the contribution expected from diffractive processes.

1 data table match query

No description provided.


Polarization Measurements in pi+ p, K+ p and p p Elastic Scattering at 45-GeV/c and Comparison with Regge Phenomenology

The SACLAY-SERPUKHOV-DUBNA-MOSCOW collaboration Gaidot, A. ; Bruneton, C. ; Bystricky, J. ; et al.
Phys.Lett.B 61 (1976) 103-106, 1976.
Inspire Record 113043 DOI 10.17182/hepdata.27714

The polarization parameter P has been measured for elastic π + p, K + p and pp scattering at 45 GeV/c. Four-momentum transfer ranges from −0.08 to −1.1 (GeV/) 2 for pp, and from −0.08 to −0.9 (GeV/) 2 for π + p and K + p. The energy dependence of the polarization P ( t ) in π + p and in K + p above 6 GeV/c incident momentum is compatible with interference between pomeron and Regge poles. On the other hand, the polarization in p p elastic scattering decreases faster than ordinary Regge model predictions. This result can be explained by interference between non flip and flip amplitudes of the pomeron, leading to negative values for the polarization.

2 data tables match query

No description provided.

No description provided.


Measurements of the Spin Rotation Parameter R in p p and pi+ p Elastic Scattering at 45-GeV/c

The SERPUKHOV-SACLAY-DUBNA-MOSCOW collaboration Pierrard, J. ; Bruneton, C. ; Bystricky, J. ; et al.
Phys.Lett.B 61 (1976) 107-109, 1976.
Inspire Record 113035 DOI 10.17182/hepdata.27706

The spin rotation sf R in pp and π + p elastic scattering at 45 GeV/c has been measured at the Seppukhov accelarator, for z . sfnc ; t |; ranging from 0.2 to 0.5 (GeV/) 2 . The results are presented, together with previous R measurements at lower energies. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues in the pomeron exchange.

2 data tables match query

No description provided.

No description provided.


Polarization in Elastic Scattering of pi+, K+ Mesons and Protons on Protons at 45-GeV/c

The Serpukhov-Saclay-Dubna-Moscow collaboration Bruneton, C. ; Bystricky, J. ; Gaidot, A. ; et al.
Sov.J.Nucl.Phys. 25 (1977) 198, 1977.
Inspire Record 108993 DOI 10.17182/hepdata.19052
1 data table match query

No description provided.


Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 95 (2011) 41001, 2011.
Inspire Record 922651 DOI 10.17182/hepdata.59485

Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.

1 data table match query

The measured differential elastic cross section. Data from the tabulation in CERN-PH-EP-2012-239.


Measurement of proton-proton elastic scattering and total cross-section at S**(1/2) = 7-TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 101 (2013) 21002, 2013.
Inspire Record 1220862 DOI 10.17182/hepdata.66456

At the LHC energy of $\sqrt s = 7\,{\mathrm { TeV}}$ , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σ(beam)) in a dedicated run with β* = 90 m, |t|-values down to 5·10(−)(3) GeV(2) were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV(−)(2) over the large |t|-range from 0.005 to 0.2 GeV(2) describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).

4 data tables match query

The measured differential elastic cross section.

The measured differential elastic cross section in the high |T| region. where it originally appeared as a plot, but was not tabulated.

The fitted slope parameter for the elastic cross section fitted over 4 |T| ranges.

More…

Evidence for Non-Exponential Elastic Proton-Proton Differential Cross-Section at Low |t| and sqrt(s) = 8 TeV by TOTEM

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Nucl.Phys.B 899 (2015) 527-546, 2015.
Inspire Record 1356731 DOI 10.17182/hepdata.73431

The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy sqrt(s) = 8 TeV based on a high-statistics data sample obtained with the beta* = 90 optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2 GeV^2 with a significance greater than 7 sigma. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb, respectively, in agreement with previous TOTEM measurements.

1 data table match query

The elastic differential cross-section as determined in this analysis using the ''optimised'' binning.


Double Spin Asymmetries A_NN and A_SS at sqrt{s}=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

The pp2pp collaboration Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 647 (2007) 98-103, 2007.
Inspire Record 729168 DOI 10.17182/hepdata.31499

We present the first measurements of the double spin asymmetries A_NN and A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The measured asymmetries, which are consistent with zero, allow us to estimate upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t as well as on the difference Delta(sigma_T) between the total cross sections for transversely polarized protons with antiparallel or parallel spin orientations.

3 data tables match query

Double spin asymmetries.

Double spin asymmetries.

T dependence of the double spin asymmetry ASS3 with statistical errors only.