A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The total elastic cross section and the observed elastic cross section within the fiducial volume.
In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.
The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.
The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.
The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
INTEGRATION OVER RANGE OF ABS(T) FROM 0 TO 1 GEV.
ELASTIC DIFFERENTIAL CROSS SECTION AT T=0 DERIVED FROM THE OPTICAL THEOREM.
The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.
No description provided.
The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.
The polarization parameter P has been measured for elastic π + p, K + p and pp scattering at 45 GeV/c. Four-momentum transfer ranges from −0.08 to −1.1 (GeV/) 2 for pp, and from −0.08 to −0.9 (GeV/) 2 for π + p and K + p. The energy dependence of the polarization P ( t ) in π + p and in K + p above 6 GeV/c incident momentum is compatible with interference between pomeron and Regge poles. On the other hand, the polarization in p p elastic scattering decreases faster than ordinary Regge model predictions. This result can be explained by interference between non flip and flip amplitudes of the pomeron, leading to negative values for the polarization.
No description provided.
No description provided.
The spin rotation sf R in pp and π + p elastic scattering at 45 GeV/c has been measured at the Seppukhov accelarator, for z . sfnc ; t |; ranging from 0.2 to 0.5 (GeV/) 2 . The results are presented, together with previous R measurements at lower energies. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues in the pomeron exchange.
No description provided.
No description provided.
We report final results on the polarization parameter P in elastic scattering of π − , K − and antiprotons at 40 GeV/ c incident momentum. The energy dependence of P (t) in π − p above 10 GeV/ c is well fitted by P (t) α s αR(t)-α P (t) where α R (t) are the effective Regge and Pomeron trajectories respectively. The data in K − p are compatible with exchange degeneracy. The results inp¯p show an important structure for |t|> 0.3 (GeV/c) 2 demonstrating the existence of a large helicity flip amplitude.
.
.
We report our first measurements of the polarization in the elastic scattering of negative pions from polarized protons at an incident pion momentum of 40 GeV/ c . The momentum-transfer region covered was 0.08 < | t | < 1.3 (GeV/ c ) 2 . The angular distribution of the polarization exhibits a first minimum of ∼ − 5% and the well-known zero around t ≈ − 0.6 (GeV/ c ) 2 . The energy variation of the first minimum (at around t = − 0.2) may be expressed in a simple form, P avr = −(0.48±0.06) s −0.52±0.05 .
No description provided.
The spin rotation parameter R has been measured for elastic π − p scattering at 40 GeV/ c , at four momentum transfers t ranging from −0.19 to −0.52 (GeV/ c ) 2 . The average value within this interval is R π − p = -0.200± 0.023. The resulting constraints on the πN scattering amplitudes are discussed. The experiments also yields an average value for K − p scattering, R K − p scattering, R K − p = -0.16±0.16.
.
.
No description provided.
The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.
'TABLE'. 'BIN'.
'TABLE'. 'BIN'.
'TABLE'. 'BIN'.
The Fermilab hybrid 30-in. bubble-chamber spectrometer was exposed to a tagged 147-GeV/c positive beam containing π+, K+, and p. A sample of 3003 K+p, 19410 pp, and 20745 π+p interactions is used to derive σn, 〈n〉, f2cc, and 〈nc〉D for each beam particle. These values are compared to values obtained at other, mostly lower, beam momenta. The overall dependence of 〈n〉 on Ea, the available center-of-mass energy, for these three reactions as well as π−p and pp interactions has been determined.
No description provided.
No description provided.
No description provided.
Polarization distributions and differential cross section data for elastic scattering of negative pions on protons between 865 and 2732 MeV/ c are presented. They are compared with published phase-shift analyses.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A oonn (pp) and the analyzing power A oono (pp) have been measured in the angular region 45°< θ CM <90° at 0.834, 0.874, 0.934, 0.995 and 1.095 GeV beam kinetic energy using the SATURNE II polarized proton beam incident on the polarized proton target.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A00kk (pp) has been measured in the angular region 45°<θCM<90° at 0.719, 0.834, 0.874, 0.934, 0.995 and 1.095 GeV using the SATURNE II polarized proton beam incident on a polarized target. The parameters A00nn(pp and A00sk(pp) were measured at 0.874 in the same angular region.
No description provided.
No description provided.
No description provided.
Absolute differential cross sections for pp elastic scattering have been measured at kinetic energies of 648, 746, 795, 843, 892, 942 and 992 MeV and for momentum transfer 0.006 < z . sfnctz . sfnc <0.040 (GeV/ c ) 2 . Both scattered and recoil protons were detected in coincidence. The slope parameters of the diffraction cone and the contribution of the spin-spin amplitudes to forward elastic pp scattering were determined.
No description provided.
No description provided.
No description provided.
The differential cross section for K ± p elastic scattering has been measured in the forward meson direction (0.0008 < t < 0.1 GeV 2 ) in an electronics experiment at incident momenta between 0.9 and 2.06 GeV/ c . The high statistics and absolute normalisation of the data allow a good determination of the real part of the forward nuclear scattering amplitude by means of the Coulomb-nuclear interference effect.
No description provided.
The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.
.
.
.
The spin rotation parameter R in elastic proton-proton scattering has been determined at incident momenta 6 and 16 GeV/ c in the interval from t = −0.18 (GeV/ c ) 2 to −0.54 (GeV/ c ) 2 . R pp at 16 GeV/ c is close to the val obtained for R in π − p elastic scattering at the same incident momentum. Equality of R pp ( s , t ) and R π p ( s , t ) is expected if Pomeron exchange dominates and if factorization holds. The t -dependence of R at 16 GeV/ c is consistent with weak helicity flip.
No description provided.
No description provided.
Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.
Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.
Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.
Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.
The total cross section difference Δα L (pp) for proton-proton scattering with beam and target polarized longitudinally parallel and antiparallel, respectively, has been measured using the polarized proton beam from SATURNE II and a frozen spin polarized proton target. The beam polarization was reversed from pulse to pulse, and at each energy Δα L was measured for both signs of target polarization. The data below 800 MeV confirm the previously observed structures. The cross section difference is found to change by 8.0 ± 0.5 mb between 520 MeV and 760 MeV. At the higher energies the results show no indication for similar structures or for a change of the sign of Δα L .
ERRORS INCLUDE UNCERTAINTY IN THE BEAM POLARIZATION.
We have measured the differential cross section for π − p elastic scattering at eight incident momenta, 2.06, 2.26, 2.45, 2.65, 2.86, 3.05, 3.26 and 3.48 GeV/ c , in a wide range of c.m. scattering angle between 15° and 160°. A pronounced dip-bump structure has been found at large angles. Details of the structure are quantitatively described as functions of the incident momentum.
No description provided.
No description provided.
No description provided.
Forward differential cross sections for π − p elastic scattering at 1.0, 1.5 and 2.0 GeV/ c show that the square of the imaginary parts of the nuclear scattering agrees with the optical theorem prediction within ±3%, when averaged over the three momenta.
No description provided.
The spin-dependent observables D 0 n 0 n and K 0 nn 0 in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen-spin polarized target. The beam and target polarizations were oriented along the normal to the scattering plane. Below 1 GeV the present data agree with previously existing measurements. Below 1.3 GeV they are compared with the predictions of the Saclay-Geneva phase-shift analysis. The results will improve the phase-shift analysis solutions and will contribute to their extension towards higher energies.
No description provided.
No description provided.
No description provided.
Polarization and differential cross-section data for elastic scattering of negative kaons on polarized protons between 865 and 1330 MeV/ c are presented. Comparisons are made with predictions given by published energy dependent phase-shift analyses. The Legendre expansion coefficients characterizing the polarization distributions show remarkable structures resulting from excitation of Λ- and Σ-resonances. An analysis of the elastic and charge-exchange data in this region of momenta supports the assignments of J P = 3 2 + for the Λ(1870) resonance. The occurence of zero crossings in the polarization data is discussed.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A oosk was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ⋍ 50°. At 0.88 GeV they complete our previous measurements from 45° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from gq CM = 28° (at lower energies) or θ CM = 18° (at higher energies) to θ CM > 90°. The shape of the angular distribution A oosk (pp) = ƒ(θ CM ) changes considerably between 1.8 and 2.4 GeV.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A ookk in pp elastic scattering was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ⋍ 50° and complete our previous measurements from 45° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A ookk (pp) = f ( θ CM ) changes considerably between in our energy region.
No description provided.
No description provided.
No description provided.
The spin-dependent observables N 0 nkk , D 0 s ″0 k and K 0 s ″ k 0 in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen-spin polarized target. The beam and target polarizations were oriented longitudinally. Precession of the recoil-particle spin in the target holding field introduces small contributions from other parameters. The present data agree with the few previously existing measurements. Below 1.3 GeV our data are compared with the predictions of the Saclay-Geneva phase-shift analysis. The new results will considerably affect the phase-shift analysis solutions and will contribute to their extension towards higher energies.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Polarization and differential cross-section data at 16 momenta between 0.86 and 2.74 GeV/ c are presented. (Preliminary data on some of the momenta have been published earlier.) In an energy-independent phase-shift analysis from threshold up to 2.5 GeV/ c , resonant-like as well as non-resonant solutions are found for the P 3 wave. An helicity flip-non-flip decomposition of the partial waves partly supports the indications found in the analyses of other reactions that the pomeron is built up mainly from s -channel helicity non-flip contributions.
No description provided.
No description provided.
No description provided.
The spin correlation parameters A oosk and A ookk were measured at 0.834 and 0.995 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements were carried out in the angular region φ CM from 50° to ≃ 90°. The shape of the angular distribution A oosk (pp) = f ( θ CM ) changes rapidly from 0.8 to 1.0 GeV. The A ookk data points specify our previous measurements.
No description provided.
No description provided.
No description provided.
The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Elastic Σ − p and π − p cross section have been measured at 17.2 GeV/ c in the t interval −0.12, −0.38 (GeV/ c ) 2 . The Σ − p slope is b = 8.12 ± 0.35 (GeV/ c ) −2 .
No description provided.
The asymmetry A LL for pp elastic scattering has been measured at 650 and 800 MeV in the region of Coulomb-nuclear interference. The real part of the double-spin-flip amplitude extracted from these data completes our determination of the forward pp scattering amplitudes at these energies. Comparison with the predictions of forward dispersion relations reveals a discrepancy in the spin-dependent channels at 650 MeV.
No description provided.
No description provided.
A study of pp interactions at an incident momentum of 16.2 GeV/ c leading to two-prong non-strange final states was carried out in an exposure of the 2m CERN hydrogen bubble chamber. The c.m. angle and momentum distributions for the outgoing particles in the final states pn π + and pp π 0 are presented and discussed. These final states were analysed in terms of quasi two-body final states - N(Nπ), with the pion-nucleon system in an I = 1 2 or I = 3 2 state. A determination of these two isospin amplitudes and their interference term is then carried out. The reaction pp → pn π + is found to be well described by a Reggeized exchange model, as well as by a double Regge-exchange model.
No description provided.
We have measured the difference between the pp total cross-sections for parallel and anti-parallel longitudinal spin states at beam momenta of 3 and 6 GeV/ c . These results, combined with our previous measurements, at lower momenta, are useful in clarifying a striking structure appearing at around 1.5 GeV/ c . We have also measured for the first time, the spin-spin correlation parameter C LL ( t ) in pp elastic scattering at 6 GeV/ c . We observe evidence for an exchange with A 1 -like quantum-numbers.
NOTE: HIGHER -T DATA ARE BEING ANALYSED. PUBLISHED GRAPH HAS LARGER ERRORS.
THESE NUMBERS APPEAR TO UPDATE THOSE REPORTED IN I. P. AUER ET AL., PRL 37, 1727 (76). NOTE: DATA MAY HAVE SMALLER ERROR BARS IN THE FINAL ANALYSIS.
NOTE: MORE DATA ARE BEING ANALYSED. SINCE THE POLARIZED TARGET MAGNETIC FIELD WAS TILTED AT 18 DEG AWAY FROM THE BEAM DIRECTION, THE MEASURED CSL CONTAINS AN ADMIXTURE OF CSS. THE CSL VALUES QUOTED HERE HAVE BEEN CORRECTED FOR THIS EFFECT USING THE EXPERIMENTAL VALUES OF CSS.
Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.
Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.
Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.
Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.
The spin rotation parameter R has been measured at CERN, for π ± p at 6 GeV c and for π − p at 16 GeV c , with t ranging from −0.19 to −0.51 ( GeV c ) 2 . The parameter A was measured for π − p at 6 GeV c in the interval between t =−0.19 and minus;0.41 ( GeV c ) 2 . The averaged values are the following; R (+6) =−0.08±0.04, R (−6) =−0.23±0.05 and R (−16) =−0.23±0.05. The values obtained for A are close to +1.
No description provided.
No description provided.
No description provided.
The polarization in π + p → π + p and K + p → K + p has been measured at 6 and 12 GeV/ c in the four-momentum transfer interval 0.1 ⩽ | t | ⩽ 2.0 (GeV/ c ) 2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K + p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/ c
No description provided.
No description provided.
No description provided.
A precise measurement of the analyzing power $A_N$ in proton-proton elastic scattering in the region of 4-momentum transfer squared $0.001 < |t| < 0.032 ({\rm GeV}/c)^2$ has been performed using a polarized atomic hydrogen gas jet target and the 100 GeV/$c$ RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant $A_N$ of 4--5%, peaking at $-t \simeq 0.003 ({\rm GeV}/c)^2$. This kinematic region is known as the Coulomb Nuclear Interference region. A possible hadronic spin-flip amplitude modifies this otherwise calculable prediction. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude.
Analysing power as a function of momentum transfer T. The first DSYS error is the systematic error, the second is the normalization error on the target polarization.
None
.
.
.
Differential cross sections have been measured in the region of small forward angles (between 0 and ∼40 mrad) for the elastic scattering reactions pp → pp at 4.2, 7.0 and 10.0 GeV /c and p p → p p at 4.2, 6.0, 8.0 and 10.0 GeV /c . The maximum momentum transfer is ∼0.025 GeV 2 at the lowest and ∼0.10 GeV/c at the highest incident momentum. Values of the slope and the real part of the forward scattering amplitude of the above reactions have been derived; the values obtained are in good agreement with dispersion relations.
No description provided.
No description provided.
TABLE ALSO GIVES SIG, SLOPE AND T-RANGE USED IN FIT.
The differential cross sections for elastic π − p, K − p , p p and π + p, pp scattering at 39 and 44.5 GeV/ c , respectively, have been measured in the interval of momentum transfer squared 0.15 ≤ ovbt | ≤ 2 (GeV/ c ) 2 .
No description provided.
No description provided.
No description provided.
The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.
No description provided.
The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.
Statistical errors only.
The differential cross section of K − p and K + p elastic scattering has been measured at 4.2, 7 and 10 GeV/ c in the very forward region of scattering angles. The measurements have been made at the CERN PS by means of multiwire proportional chambers and counters. The region of momentum transfers t is 0.001 ⩽ | t | ⩽ 0.10 GeV 2 at the highest momentum and 0.001 ⩽ | t | ⩽ 0.03 GeV 2 at the lowest. Over these regions the Coulomb and the nuclear amplitudes reach their maximum interference. We have used a parametrisation of the above amplitudes to determine the value of the real part of the nuclear forward scattering amplitude. A dispersion relation fit has then been performed using these and earlier measurements; the asymptotic behaviour of the K ± p real parts has been examined in the light of this fit.
No description provided.
No description provided.
No description provided.
A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .
Analysing power measurements at a fixed laboratory angle of 13.9 degrees.
No description provided.
No description provided.
The accelerated polarized deuteron beam of Saturn II was used to measure the analyzing power for np elastic scattering at five energies. The left-right asymmetries ε = (L + R)/(L + R) for np and for pp elastic scattering were measured simultaneously by CH 2 − carbon subtraction using one of the beam-line polarimeters. The analyzing power A 00 n 0 (np) is given by the ratio ε np d / ε pp d multiplied by the known analyzing power for pp elastic scattering. Experimental evidence is consistent with the underlying assumption that in the kinetmatic region of the experiment the ratio of the np to pp analyzing powers for scattering of quasifree nucleons in deuterons is the same as for scattering of free neutrons and protons, respectively.
No description provided.
No description provided.
No description provided.