A Measurement of the Polarization Parameter in Large Angle Proton Proton Elastic Scattering at 7.9-GeV/c

Aschman, D.G. ; Crabb, D.G. ; Green, K. ; et al.
Nucl.Phys.B 125 (1977) 349-368, 1977.
Inspire Record 125075 DOI 10.17182/hepdata.35322

The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.

1 data table match query

No description provided.


Measurement of the polarization parameter in pi- p backward elastic scattering at 6-GeV/c

The CERN-Orsay-Oxford collaboration Dick, L. ; Janout, Z. ; Aoi, H. ; et al.
Nucl.Phys.B 64 (1973) 45-57, 1973.
Inspire Record 94951 DOI 10.17182/hepdata.32420

The polarization parameter in π − p elastic scattering has been measured in the backward angular region at an incident momentum of 6 GeV/ c . The measurements cover the range of four momentum transfer u = 0 to −1 (GeV/ c ) 2 , and were obtained with a high intensity pion beam, a butanol polarized proton target, and arrays of scintillation counter hodoscopes. The polarization is different from zero, in contradiction to the prediction of the naive one trajectory Regge-exchange model. It increases positively with the four-momentum transfer u, reaching a maximum of about 0.4 at u ≈ −0.3 (GeV/c)2. It then decreases and becomes slightly negative beyond u ≈ −0.5 (GeV/c)2. A variety of baryon exchange models are briefly reviewed and none are found to be in complete agreement with all the experimental data.

1 data table match query

No description provided.


Measurement of the polarization parameter in pi+ p backward elastic scattering at 6-GeV/c

The CERN-IPN Orsay-Oxford collaboration Dick, L. ; Janout, Z. ; Aeoi, H. ; et al.
Nucl.Phys.B 43 (1972) 522-540, 1972.
Inspire Record 75086 DOI 10.17182/hepdata.32869

The polarization parameter in π + p backward elastic scattering at 6 GeV/ c incident pion momentum has been measured using a butanol polarized proton target, a high intensity pion beam, and a scintillation hodoscope detection system. Details of the apparatus and data analysis are presented here, together with the final results.

1 data table match query

No description provided.


DCS for π − p elastic scattering from 1.2 to 3.0 GeV/ c and phase shift analysis

Aplin, P.S. ; Cowan, I.M. ; Gibson, W.M. ; et al.
Nucl.Phys.B 32 (1971) 253-284, 1971.
Inspire Record 1104030 DOI 10.17182/hepdata.69638

Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.

31 data tables match query

No description provided.

No description provided.

No description provided.

More…

A MEASUREMENT OF pi+ p BACKWARD ELASTIC DIFFERENTIAL CROSS-SECTIONS FROM 1.282-GeV/c TO 2.472-GeV/c

Candlin, D.J. ; Lowe, D.C. ; Peach, K.J. ; et al.
Nucl.Phys.B 244 (1984) 23-56, 1984.
Inspire Record 201771 DOI 10.17182/hepdata.7101

New high-statistics measurements of π + p elastic scattering differential cross sections are presented at 30 momentum points between 1.282 and 2.472 GeV/ c , covering most of the angular distribution outside the forward diffractive peak. These data show significant disagreements at some momenta with previous high-statistics experiments and with current partial wave analyses.

30 data tables match query

No description provided.

No description provided.

No description provided.

More…

$K^+$ nucleon elastic scattering at 180° between 1.0 and 1.5 GeV/c incident momentum

Adams, U. ; Carter, R.S. ; Cook, V. ; et al.
Nucl.Phys.B 87 (1975) 41-51, 1975.
Inspire Record 1392682 DOI 10.17182/hepdata.32061

We have measured the cross section at 180° for K + p and K + n elastic scattering in the momentum range 1.0 to 1.5 GeV/ c . The K + n cross section was measured on deuterium and the K + p on hydrogen and deuterium. We were thus able to measure directly the difference between free nucleon (proton) scattering and bound nucleon (proton) scattering at large angles. This difference was found to be small and within our experimental accuracy the K + p(n) cross section should be equal to the K + p (free) cross section at 180°. We found no evidence for an s -channel resonance Z ∗ in either the K + p or K + n system. A comparison of our data and those of other groups with theoretical predictions is given.

1 data table match query

HYDROGEN AND DEUTERIUM TARGET DATA ARE IN GOOD AGREEMENT. THESE CROSS SECTIONS ARE A WEIGHTED AVERAGE.


Comparison of the Line Reversed Channels anti-p p --> pi- pi+ and pi+ p --> p pi+ at 6-GeV/c

Stein, N.A. ; Edelstein, R.M. ; Green, D.R. ; et al.
Phys.Rev.Lett. 39 (1977) 378-381, 1977.
Inspire Record 124936 DOI 10.17182/hepdata.20964

Differential cross sections have been measured for p¯p→π−π+ (1) and its line-reversed partner π+p→pπ+ (2) in the range tmin>t>−1.5 (GeV/c)2 at 6 GeV/c. Clear structure is seen in the differential cross section for Reaction (1) at t∼−0.4 (GeV/c)2. However, this feature is quite different from the striking dip seen in (2) at t∼−0.15 (GeV/c)2, indicating a failure of line reversal and disagreement with simple Regge models.

1 data table match query

No description provided.


Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

1 data table match query

Errors include statistical and systematic uncertainties.


Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…

Angular dependence of the p p elastic scattering analyzing power between 0.8-GeV and 2.8-GeV. 1. Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 60 (1999) 054001, 1999.
Inspire Record 508563 DOI 10.17182/hepdata.25566

Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.

21 data tables match query

Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.

Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.

Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.

More…