Single-pion production in p p collisions at 0.95-GeV/c. I.

The COSY-TOF collaboration El-Samad, S.Abd ; Bilger, R. ; Brinkmann, K. -Th. ; et al.
Eur.Phys.J.A 30 (2006) 443-453, 2006.
Inspire Record 725793 DOI 10.17182/hepdata.43429

The single-pion production reactions $pp\to d\pi^+$, $pp\to np\pi^+$ and $pp\to pp\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus all pion production channels were recorded with 1-4 overconstraints. The total and differential cross sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the $pp\pi^0$ channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular we observe very large anisotropies for the $\pi^0$ angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with $\pi^0$ $s$- and $d$-partial waves and emphasizing the important role of $\pi^0$ d-waves.

1 data table match query

Measured angular distribution for elastic P P scattering in the CM system normalised to the data in the SAID database (Arndt et al. PR C62,034005(2000). This measurement is made to determine the luminosity.


Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…

A bubble chamber study of proton-proton interactions at 4 GeV/c Part I—Elastic scattering, single-pion and deuteron production

Ooletti, S. ; Kidd, J. ; Mandelli, L. ; et al.
Nuovo Cim.A 49 (1967) 479-498, 1967.
Inspire Record 1185329 DOI 10.17182/hepdata.981

Elastic scattering, single-pion and deuteron production have been investigated. The cross-section for elastic scattering is σelastic = (13.5±0.3) mb. The angular distribution has been fitted to dσ/d|t|=(dσ/d|t|)0 e −bt in the region of low values oft. The best fit givesb=(6.7±0.5) (GeV/c)−2 and (dσ/d|t|)0=(91±5) mb(GeV/c)−2. The cross-sections for ppπ0, pnπ+ reactions are respectively (2.6±0.3) mb and (9.7±0.4) mb. These reactions are dominated by the (3/2, 3/2) nucleonpion isobar production and by forward backward collimation of the nucleons. The production rates for the isobars ++1238 , +1238 , +1500 have been estimated, taking into account the experimental peripheral behaviour of the interaction. In the pnπ+ reaction they are (50±2)%; (10±3)%; (4±3)%. In the ppπ+ reaction the production of ++1238 is estimated to be (45±10)%. The dπ+ and dπ+π+π- reaction cross-sections are respectively (0.03±0.01) mb, and (0.04±0.01) mb.

2 data tables match query

No description provided.

No description provided.


Measurement of Proton Proton Elastic Scattering at 6-GeV/c in Polarized Initial and Final Spin States

Borghini, M. ; De Boer, W. ; Fernow, Richard C. ; et al.
Phys.Rev.D 17 (1978) 24-41, 1978.
Inspire Record 134418 DOI 10.17182/hepdata.4518

The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range P⊥2=0.60−1.0 (GeV/c)2 using a 65% polarized target and a 75% polarized proton beam of intensity 3 × 109 protons/pulse. The polarization of the recoil proton was simultaneously measured with a well calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at our largest P⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data gives the magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the four double-flip transversity cross sections are nonzero.

4 data tables match query

No description provided.

THE FIVE INDEPENDENT PURE FOUR-SPIN CROSS SECTIONS AS DERIVED FROM THE EIGHT MEASURED THREE-SPIN CROSS SECTIONS ASSUMING P AND T INVARIANCE. THE ABSOLUTE DIFFERENTIAL CROSS SECTION VALUES ASSUME THAT THE SPIN-AVERAGED D(SIG)/DT IS 2.25, 1.17, 0.365 AND 0.167 MB/GEV**2 FOR EACH VALUE OF PT**2 RESPECTIVELY.

WOLFENSTEIN PARAMETERS. POL(NAME=A) IS (N000) OR (0N00), THE ANALYZING POWER AVERAGED OVER TARGET OR BEAM POLARIZATION. POL(NAME=P) IS (00N0), THE POLARIZATION PARAMETER. TIME-REVERSAL INVARIANCE REQUIRES THAT P = A. POL.POL(NAME=CNN) IS (NN00) USING T-INVARIANCE. POL.POL(NAME=DNN) IS (0N0N). POL.POL(NAME=KNN) IS (N00N). POL.POL(NAME=C3N) IS A COMPONENT OF THE TRIPLE SPIN CORRELATION TENSOR. PARITY INVARIANCE REQUIRES THAT C3N = P.

More…

P-P Interactions at 10 GEV/C

Almeida, S.P. ; Rushbrooke, John G. ; Scharenguivel, J.H. ; et al.
Phys.Rev. 174 (1968) 1638-1661, 1968.
Inspire Record 55886 DOI 10.17182/hepdata.5529

About 3700 two-prong and 5600 four-prong events of 10-GeV/c pp interactions in the Saclay 81-cm hydrogen bubble chamber have been measured and analyzed. The reliability of the identification of the different final states has been checked using Monte Carlo-generated events. For the channels accessible to analysis, cross sections and invariant-mass distributions are given. The c.m. angular distributions and the mean values of the transverse momentum for all final-state particles are shown and discussed. Production of Δ++(1236) accounts for about 30% of the cross section σ(pp→pnπ+)=4.1±0.4 mb. About 50% of the cross section σ(pp→ppπ+π−)=2.4±0.2 mb can be accounted for by Δ++ production. Production of nucleon isobars at 1450, 1520, and 1730 MeV and their subsequent decay into pπ+π− are investigated. Their cross sections, t dependences, and branching ratios are determined, using a one-pion-exchange model (OPEM) for calculating the background distributions. The production of resonances decaying into pπ− at 1236, 1500, and 1690 MeV is seen, and cross sections are given. Resonance production in the ppπ+π−π0 and pnπ+π+π− reactions is studied using background curves calculated with a model based on simple parametrizations of the c.m. momentum distributions. The production of nucleon isobars accounts for nearly 100% of these reactions. For the reactions pp→ppω, ppη, and ppf0, the cross sections found are 0.16±0.03, 0.16±0.07, and 0.10±0.04 mb, respectively, corrected for unobserved decay modes. It is shown that most of the gross features of the pion-production reactions can be explained by the OPEM with the form factors of Ferrari and Selleri.

1 data table match query

No description provided.


Measurement of Particle and anti-Particle Elastic Scattering on Protons Between 6-GeV and 14-GeV

Brandenburg, G.W. ; Carnegie, R.K. ; Cashmore, R.J. ; et al.
Phys.Lett.B 58 (1975) 367-370, 1975.
Inspire Record 100639 DOI 10.17182/hepdata.5543

Differential cross sections in the t -range between 0.02 and 1.5 GeV 2 have been measured for the elastic scattering of particles and antiparticles on protons at 6.4, 10.4 and 14 GeV for K ± p and 10.4 GeV for π ± p and p ± p . Large statistics have been achieved and systematic uncertainties have been minimized. The relative systematic uncertainty between particle and antiparticle data is less than 0.5%. Accurate measurements of the position of the first crossover between particle and antiparticle differential cross sections have been performed. As the energy increases from 6.4 to 14 GeV the K ± p crossover moves to smaller values by 0.010 GeV 2 with a statistical error of 0.006 GeV 2 and a systematic uncertainty of 0.005 GeV 2 . The crossover positions at 10.4 GeV for π ± , K ± and p ± scale approximately with the interaction radii.

10 data tables match query

CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2.

CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2. SMALL ANGLE CROSS SECTIONS IN SMALLER T-BINS.

CROSSOVER POSITION IS -T = 0.211 +- 0.004 (DSYS = 0.0025) GEV**2.

More…

Measurement of the polarization parameter in pi+- p, k+- p, p p, and anti-p p elastic scattering at 6 gev/c

Borghini, M. ; Dick, L. ; Di Lella, L. ; et al.
Phys.Lett.B 31 (1970) 405-409, 1970.
Inspire Record 63191 DOI 10.17182/hepdata.6078

Experimental results are presented for the polarization parameter P 0 in π ± p , K ± p , pp, and p ̄ p elastic scattering at 6 GeV/ c , and in the range of the invariant four-momentum transfer squared − t from 0.05 to ∼ 2.0 (GeV/ c ) 2 .

1 data table match query

No description provided.


Passive scalar fluctuations in intermittent turbulence

Crisanti, A. ; Falcioni, M. ; Paladin, G. ; et al.
EPL 14 (1991) 541-546, 1991.
Inspire Record 314520 DOI 10.17182/hepdata.857

We discuss how the spatial intermittency of energy dissipation in 3D fully developed turbulence affects the small-scale statistics of passive scalars. We relate the passive-scalar behaviour to the diffusion properties of particle pairs in turbulent fluids. We thus find the intermittency correction to the -5/3 Obukhov-Corrsin law for the power spectrum of a passive scalar at wavenumber k where molecular diffusion and viscosity play a negligible role (inertial convective subrange). This correction is positive at difference with the negative correction to the -5/3 Kolmogorov law for the energy spectrum. We finally show that the structure functions of passive scalars have scaling exponents linear in the moment order, even in the framework of multifractal models.

1 data table match query

Anti-p p and p p Forward Elastic Scattering Between 4-GeV/c and 10-GeV/c

Jenni, P. ; Baillon, P. ; Declais, Y. ; et al.
Nucl.Phys.B 129 (1977) 232-252, 1977.
Inspire Record 120467 DOI 10.17182/hepdata.35255

Differential cross sections have been measured in the region of small forward angles (between 0 and ∼40 mrad) for the elastic scattering reactions pp → pp at 4.2, 7.0 and 10.0 GeV /c and p p → p p at 4.2, 6.0, 8.0 and 10.0 GeV /c . The maximum momentum transfer is ∼0.025 GeV 2 at the lowest and ∼0.10 GeV/c at the highest incident momentum. Values of the slope and the real part of the forward scattering amplitude of the above reactions have been derived; the values obtained are in good agreement with dispersion relations.

3 data tables match query

No description provided.

No description provided.

TABLE ALSO GIVES SIG, SLOPE AND T-RANGE USED IN FIT.


A Measurement of the Polarization Parameter in Large Angle Proton Proton Elastic Scattering at 7.9-GeV/c

Aschman, D.G. ; Crabb, D.G. ; Green, K. ; et al.
Nucl.Phys.B 125 (1977) 349-368, 1977.
Inspire Record 125075 DOI 10.17182/hepdata.35322

The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.

1 data table match query

No description provided.