Interference measurements of the real part of the forward pi- p elastic scattering amplitude at 2.44 and 1.91 gev/c momenta

Vorobev, G.G. ; Govorun, N.N. ; Nomofilov, A.A. ; et al.
Yad.Fiz. 19 (1974) 849-860, 1974.
Inspire Record 95139 DOI 10.17182/hepdata.19252

None

1 data table match query

INCLUDING DATA FROM PREVIOUS WORK OF THIS GROUP.


Study of $p p$ Interactions in the Momentum Range 0.9-{GeV}/$c$ to 2.0-{GeV}/$c$

Shimizu, F. ; Koiso, H. ; Kubota, Y. ; et al.
Nucl.Phys.A 389 (1982) 445-456, 1982.
Inspire Record 12089 DOI 10.17182/hepdata.37051

pp interactions at 11 momenta in the range 0.9 to 2.0 GeV/ c have been studied. The elastic angular distributions, covering the c.m. angular range 22°–90°, agree in general with Hoshizaki's phase-shift analysis which shows the looping 1 D in and 3 F 3 amplitudes in the Argand diagram. About 80% of pn π + events come from the n Δ ++ state at all momenta above 1.2 GeV/ c . The behavior of the density matrix elements of the Δ ++ show no momentum or angular dependence. A large fraction of pp π 0 events also come from the p Δ + state at all momenta above 1.2 GeV/ c . The behavior of the Δ + density matrix elements is similar to that for the case of Δ ++ .

1 data table match query

No description provided.


Measurement of the $p p$ Cross-sections in the Momentum Range 0.9-2.0 GeV/c

Shimizu, F. ; Kubota, Y. ; Koiso, H. ; et al.
Nucl.Phys.A 386 (1982) 571-588, 1982.
Inspire Record 11839 DOI 10.17182/hepdata.37042

The pp total, elastic, and all the inelastic cross sections were measured at 11 momenta in the range 0.9–2.0 GeV/c. No clear structure was observed in their momentum dependences. The momentum dependence of the total cross section agrees quite well with the result of a phase-shift analysis by Arndt. Our measurement of the ppπ 0 and pnπ + cross sections served to normalize the earlier systematic but relative and extrapolated measurements of these cross sections over a narrower momentum range. Calculations by König and Kroll based on a pion exchange model including the effect of an I = 1 dibaryon did not fit the single-pion production cross sections.

1 data table match query

No description provided.