Produzione di mesoni pi nell’urto pi- p at 775 MeV

Bertanza, L. ; Bigi, A. ; Casali, R. ; et al.
Nuovo Cim.Suppl. 2 (1964) 673-674, 1964.
Inspire Record 1498680 DOI 10.17182/hepdata.75451

None

1 data table match query

No description provided.


$\pi^+ − p$ elastic scattering at 820, 900 and 1050 MeV

Barloutaud, R. ; Choquet-Louedec, C. ; Derem, A. ; et al.
Phys.Lett. 1 (1962) 207-208, 1962.
Inspire Record 1400915 DOI 10.17182/hepdata.31235

None

3 data tables match query

No description provided.

No description provided.

No description provided.


$\pi^+$-proton interactions at 500 MeV incident energy

Debaisieux, J. ; Grard, F. ; Heughebaert, J. ; et al.
Nucl.Phys. 63 (1965) 273-285, 1965.
Inspire Record 1400917 DOI 10.17182/hepdata.37098

We present results on $\pi^+$-p interactions at 500 MeV from an experiment performed with the Saclay 35 cm hydrogen bubble chamber. A total of 1840 events have been observed. The branching ratio for elastic events is equal to 0.883$\pm$0.008. Eight events are unambiguously attributed to the reaction $\pi^+p\to\pi^+p\gamma$. Cross sections for the various reactions are given. The elastic angular distribution has been determined up to cos$\theta$ = +0.975 and shows evidence for S, P, D waves in good agreement with the results obtained in other experiments. For the one-pion production reactions, the ratio of $\pi^0$ production to $\pi^+$ production is found equal to 4.1$\pm$0.8. This result and the corresponding distributions for momentum and angle of the secondaries are compared with the predictions of the isobaric models.

1 data table match query

No description provided.


$\pi^+ p$ interactions at 850 MeV/c

Debaisieux, J. ; Dufour, P. ; Grard, F. ; et al.
Nucl.Phys.B 5 (1968) 147-157, 1968.
Inspire Record 1400916 DOI 10.17182/hepdata.32747

Experimental results are presented on $\pi^+ p$ interactions at 850 MeV/c incident momentum. Cross sections for the various reactions are given. The elastic differential cross section has been fitted to a polynomial in, cos$\theta$ and the resulting coefficients are compared to results at neighbouring incident momenta. For the one-pion-production reactions, the (N$\pi$) effective mass distributions and the ratio of $\pi^0$ to $\pi^+$ production have been compared to the predictions of several theoretical models.

1 data table match query

No description provided.


$\pi$-proton scattering at 516, 616, 710, 887, and 1085 MeV

Gbaed, F. ; Montanet, L. ; Lehmann, P. ; et al.
Nuovo Cim. 22 (1961) 193-198, 1961.
Inspire Record 1187691 DOI 10.17182/hepdata.37734

We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

$\pi^{-}+ p$ elastic scattering at 1 200 MeV

Bertanza, L. ; Carrara, R. ; Drago, A. ; et al.
Nuovo Cim. 19 (1961) 467-481, 1961.
Inspire Record 1184999 DOI 10.17182/hepdata.1109

A bubble chamber investigation of π−+p elastic scattering at 1 200 MeV (K.E.) is reported. The total and differential cross-sections are determined. By extrapolation of the angular distribution, the 0° cross-section is derived and compared with the results obtained with the help of the dispersion relations and the optical theorem. The forward peak is investigated in terms of diffraction scattering and a value for the optical radius is derived.

3 data tables match query

No description provided.

No description provided.

No description provided.


Elastic scattering $\pi^{-} + p$ at 915 MeV

Bergia, S. ; Bertocchi, L. ; Borelli, V. ; et al.
Nuovo Cim. 15 (1960) 551-564, 1960.
Inspire Record 1184997 DOI 10.17182/hepdata.37779

The differential cross-section for elastic scattering π−+p has been determined on the basis of 1 421 events observed in a propane bubble chamber. The angular distribution presents a backward bump (θ>90°) of (31.5±1.3)%. The amplitude at 0° obtained extrapolating the angular distribution by means of a least squares fit is compared with the value obtained from the dispersion relations and the optical theorem. New values of the pion proton cross-sections were taken into account for the dispersion relation integrals. Using the same best fit of the angular distribution a value for the interaction radius is obtained from considerations based on the diffraction scattering part.

1 data table match query

No description provided.


pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables match query

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

Precision pion proton elastic differential cross sections at energies spanning the Delta resonance.

Pavan, M.M. ; Brack, J.T. ; Duncan, F. ; et al.
Phys.Rev.C 64 (2001) 064611, 2001.
Inspire Record 554203 DOI 10.17182/hepdata.31782

A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.

18 data tables match query

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.

More…

Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table match query

No description provided.