Measurement of the spin rotation parameter A+ in the elastic scattering of positive pions on a longitudinally polarized proton target in the second resonance region

The ITEP-PNPI collaboration Alekseev, I.G. ; Bobchenko, B.M. ; Budkovsky, P.E. ; et al.
Phys.Lett.B 351 (1995) 585-590, 1995.
Inspire Record 403317 DOI 10.17182/hepdata.28540

The ITEP-PNPI collaboration presents the first results of the spin rotation parameter A + measurements in the second resonance region. The experiment was performed at the ITEP accelerator at a positive pion beam momentum 1.43 GeV/c for scattering angles θ cm = 127° and 133°. The setup was based on a polarized proton target and a carbon-plate polarimeter. The obtained data is compared with the predictions of the existing partial-wave analyses.

1 data table match query

No description provided.


Measurements of spin rotation parameter A in pion proton elastic scattering at 1.62-GeV/c.

The ITEP-PNPI collaboration Alekseev, I.G. ; Budkovsky, P.E. ; Kanavets, V.P. ; et al.
Phys.Lett.B 485 (2000) 32-36, 2000.
Inspire Record 526552 DOI 10.17182/hepdata.41744

The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

2 data tables match query

No description provided.

No description provided.


MEASUREMENT OF THE ASYMMETRY OF ELASTIC PION - PROTON SCATTERING AT 1.4-GeV/c TO 2.1-GeV/c MOMENTA

Budkovsky, P.E. ; Dobrov, V.M. ; Zhurkin, V.V. ; et al.
90-97, 1985.
Inspire Record 214097 DOI 10.17182/hepdata.40129

None

1 data table match query

No description provided.


Asymmetry in $\pi^- P$ (Polarized) Elastic Scattering in Momentum Range 1.4-{GeV}/c - 2.1-{GeV}/c

Alekseev, I.G. ; Budkovsky, P.E. ; Kanavets, V.P. ; et al.
Nucl.Phys.B 348 (1991) 257-275, 1991.
Inspire Record 285067 DOI 10.17182/hepdata.33071

Results of systematic measurements of the asymmetry parameter in the elastic scattering of pions on polarized protons at 1.4–2.1 GeV/ c in the backward hemisphere are presented together with a test of the isospin invariance of the data set available on pion-proton scattering in the investigated momentum range. The transversity isodoublet amplitudes at 1.98 and 2.07 GeV/ c are reconstructed. The obtained data, the isospin analysis and amplitude reconstruction results are compared with the current phase-shift analysis predictions.

1 data table match query

No description provided.


Measurement of the Analyzing Power for $p p$ (Polarized) $\to p p$ at $p^-$transverse**2 = 6.5-{GeV}/$c^2$

Cameron, P.R. ; Crabb, D.G. ; DeMuth, G.E. ; et al.
Phys.Rev.D 32 (1985) 3070, 1985.
Inspire Record 216507 DOI 10.17182/hepdata.23543

The spin analyzing power A in 28-GeV/c proton-proton elastic scattering was measured at P⊥2=6.5 (GeV/c)2 using a polarized proton target and a high-intensity unpolarized proton beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The result of (24±8)% confirms that the analyzing power is large and rising in the large-P⊥2 region.

1 data table match query

No description provided.


Large $p^-$transverse**2 Spin Effects in $p p \to p p$

Peaslee, D.C. ; O'Fallon, J.R. ; Simonius, M. ; et al.
Phys.Rev.Lett. 51 (1983) 2359, 1983.
Inspire Record 192857 DOI 10.17182/hepdata.20491

The analyzing power A in 28-GeV/c proton-proton elastic scattering was measured with a polarized proton target and a high-intensity unpolarized proton beam at the Brook-haven National Laboratory alternating-gradient synchrotron. The P⊥2 range of 2.85 to 5.95 (GeV/c)2 was covered with good precision. A small dip of about -3.5% was found near P⊥2=3.5 (GeV/c)2 where a 24-GeV/c CERN experiment had reported a deep dip of about -16% with large errors. In the previously unexplored large-P⊥2 region near 6 (GeV/c)2 these new large-error points suggest that A may be rising.

1 data table match query

No description provided.


Spin Effects in $p p$ Elastic Scattering at 28-{GeV}/$c$

Hansen, P.H. ; O'Fallon, J.R. ; Danby, G.T. ; et al.
Phys.Rev.Lett. 50 (1983) 802, 1983.
Inspire Record 182130 DOI 10.17182/hepdata.20535

The analyzing power, A, was measured in proton-proton elastic scattering with use of a polarized proton target and 28-GeV/c primary protons from the alternating-gradient synchrotron. Over the P⊥2 range of 0.5 to 2.8 (GeV/c)2, the data show interesting structure. There is a rather sharp dip at P⊥2=0.8 (GeV/c)2 corresponding to the break in the elastic differential cross section at the end of the diffraction peak.

1 data table match query

No description provided.


Analyzing power measurements in high‐P2∥ p‐p elastic scattering

Raymond, R.S. ; Brown, K.A. ; Bruni, R.J. ; et al.
AIP Conf.Proc. 123 (1984) 1123-1125, 1984.
Inspire Record 201609 DOI 10.17182/hepdata.18612

The analyzing power in 28 GeV/c proton/proton elastic scattering was measured at P2∥=5.95 and 6.56 (GeV/c)2 using a polarized proton target and an unpolarized proton beam at the Brookhaven National Laboratory AGS. Results indicate that the analyzing power, A, is rising sharply with P2∥.

1 data table match query

No description provided.


High precision measurement of A in large P(T)**2 spin polarized 24-GeV/c proton proton elastic scattering

Crabb, D.G. ; Kaufman, W.A. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 65 (1990) 3241-3244, 1990.
Inspire Record 299843 DOI 10.17182/hepdata.19939

We measured the analyzing power A out to P⊥2=7.1 (GeV/c)2 with high precision by scattering a 24-GeV/c unpolarized proton beam from the new University of Michigan polarized proton target; the target’s 1-W cooling power allowed a beam intensity of more than 2×1011 protons per pulse. This high beam intensity together with the unexpectedly high average target polarization of about 85% allowed unusually accurate measurements of A at large P⊥2. These precise data confirmed that the one-spin parameter A is nonzero and indeed quite large at high P⊥2; most theoretical models predict that A should go to zero.

1 data table match query

Errors quoted contain both statistical and systematic uncertainties.


Energy Dependence of Spin Spin Forces in 90-degrees (Center-of-mass) Elastic $p p$ Scattering

Lin, A. ; O'Fallon, J.R. ; Ratner, L.G. ; et al.
Phys.Lett.B 74 (1978) 273-276, 1978.
Inspire Record 129169 DOI 10.17182/hepdata.27461

We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .

2 data tables match query

ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.

THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.