Polarization Measurements in π p+ p and K p+ p elastic scattering at 6 and 12 GeV/ c with the CERN polarized deuteron target

Fujisaki, M. ; Babou, M. ; Bystricky, J. ; et al.
Nucl.Phys.B 151 (1979) 206-212, 1979.
Inspire Record 145595 DOI 10.17182/hepdata.34795

The polarization in π + p → π + p and K + p → K + p has been measured at 6 and 12 GeV/ c in the four-momentum transfer interval 0.1 ⩽ | t | ⩽ 2.0 (GeV/ c ) 2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K + p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/ c

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the p p analyzing power in the vicinity of 2.20-GeV.

Ball, J. ; Beddo, M. ; Bedfer, Y. ; et al.
Eur.Phys.J.C 10 (1999) 409-413, 1999.
Inspire Record 510350 DOI 10.17182/hepdata.43331

The pp elastic scattering analyzing power was measured in small energy steps in the vicinity of the accelerator depolarizing resonance $\gamma G= 6 $ at 2.202 GeV.

6 data tables match query

Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.

Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.

Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.

More…

Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Lett.Nuovo Cim. 40 (1984) 466-470, 1984.
Inspire Record 1388775 DOI 10.17182/hepdata.37297

The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured fromT = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH2. It was found to have a maximum at about 0.8 GeV. The energy dependence for quasielastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models.

1 data table match query

No description provided.


MEASUREMENT OF N P AND P P ASYMMETRY WITH AN ACCELERATED POLARIZED DEUTERON BEAM FROM 725-MEV TO 1000-MEV PER NUCLEON

Bystricky, J. ; Deregel, J. ; Lehar, F. ; et al.
Nucl.Phys.A 444 (1985) 597-610, 1985.
Inspire Record 222367 DOI 10.17182/hepdata.37022

The accelerated polarized deuteron beam of Saturn II was used to measure the analyzing power for np elastic scattering at five energies. The left-right asymmetries ε = (L + R)/(L + R) for np and for pp elastic scattering were measured simultaneously by CH 2 − carbon subtraction using one of the beam-line polarimeters. The analyzing power A 00 n 0 (np) is given by the ratio ε np d / ε pp d multiplied by the known analyzing power for pp elastic scattering. Experimental evidence is consistent with the underlying assumption that in the kinetmatic region of the experiment the ratio of the np to pp analyzing powers for scattering of quasifree nucleons in deuterons is the same as for scattering of free neutrons and protons, respectively.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Proton proton elastic scattering analyzing power in the 2.16-GeV to 2.28-GeV energy region.

Arvieux, J. ; Ball, J. ; Bystricky, J. ; et al.
Z.Phys.C 76 (1997) 465-468, 1997.
Inspire Record 451186 DOI 10.17182/hepdata.13537

The angular dependence of the pp elastic scattering analyzing power was measured at SATURNE II with an unpolarized proton beam and the Saclay polarized proton target. The energy region in the vicinity of the accelerator depolarizing resonance Gγ = 6 at Tkin = 2.202 GeV was studied. Measurements were carried out at seven energies between 2.16 and 2.28 GeV from 17° to 55°CM. No significant anomaly was observed in the angular and energy dependence of the results presented, whereas the existing data sets differ in this energy range.

7 data tables match query

Additional random-like systematic error of 1.1 PCT.

Additional random-like systematic error of 9.9PCT.

Additional random-like systematic error of 0.2PCT.

More…

Measurements of Polarization and Spin Rotation in Proton Proton Elastic Scattering at 3.83-GeV/c

Deregel, J. ; Bruneton, C. ; Bystricky, J. ; et al.
Nucl.Phys.B 103 (1976) 269-278, 1976.
Inspire Record 113032 DOI 10.17182/hepdata.35989

The polarization P in proton-proton elastic scattering has been measured at 3.83 GeV/ c for 0.35 ⩽ | t | ⩽ 3.0 (GeV/ c ) 2 , i.e. 29° ⩽ θ c.m. ⩽ 93°. The polarization shows a minimum at − ⋍ 1.0 ( GeV /c) 2 followed by a maximum at −⋍1.5 ( GeV /c) 2 . At the same energy the spin rotation parameter R has been measured in the interval 0.18 ⩽ | t | ⩽ 0.57 (GeV/ c ) 2 . Comparison with the results at 6.0 and 15.75 GeV/ c shows a similar t -dependence and the same average value at all three energies.

5 data tables match query

POLARIZED TARGET ASYMMETRY EQUALS RECOIL PROTON POLARIZATION BY TIME REVERSAL INVARIANCE.

'A'. 'B'. 'D'.

'A'. 'B'. 'C'. 'E'.

More…

Analyzing power measurement of p p elastic scattering in the Coulomb - nuclear interference region with the 200-GeV/c polarized proton beam at Fermilab

The E581/704 collaboration Akchurin, N. ; Langland, J. ; Onel, Y. ; et al.
Phys.Rev.D 48 (1993) 3026-3036, 1993.
Inspire Record 364576 DOI 10.17182/hepdata.22670

The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.

1 data table match query

No description provided.


Measurement of the polarization parameter in pi- p elastic scattering at 40 gev/c

The Saclay-Serpukhov-Dubna-Moscow collaboration Bruneton, C. ; Bystricky, J. ; Cozzika, G. ; et al.
Phys.Lett.B 44 (1973) 471-473, 1973.
Inspire Record 84826 DOI 10.17182/hepdata.28096

We report our first measurements of the polarization in the elastic scattering of negative pions from polarized protons at an incident pion momentum of 40 GeV/ c . The momentum-transfer region covered was 0.08 < | t | < 1.3 (GeV/ c ) 2 . The angular distribution of the polarization exhibits a first minimum of ∼ − 5% and the well-known zero around t ≈ − 0.6 (GeV/ c ) 2 . The energy variation of the first minimum (at around t = − 0.2) may be expressed in a simple form, P avr = −(0.48±0.06) s −0.52±0.05 .

1 data table match query

No description provided.


Measurement of the $P P$ Analyzing Power A(00n0) in a Large Angular Region Between 0.88-{GeV} and 2.7-{GeV}

Perrot, F. ; Fontaine, J.M. ; Lehar, F. ; et al.
Nucl.Phys.B 294 (1987) 1001-1012, 1987.
Inspire Record 255229 DOI 10.17182/hepdata.33562

The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.

16 data tables match query

Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.

Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.

Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.

More…

Polarization Measurements in pi- p, K- p and p p Elastic Scattering at 40-GeV/c

The Saclay-Serpukhov-Dubna-Morsoc collaboration Gaidot, A. ; Bruneton, C. ; Bystricky, J. ; et al.
Phys.Lett.B 57 (1975) 389-392, 1975.
Inspire Record 99592 DOI 10.17182/hepdata.27840

We report final results on the polarization parameter P in elastic scattering of π − , K − and antiprotons at 40 GeV/ c incident momentum. The energy dependence of P (t) in π − p above 10 GeV/ c is well fitted by P (t) α s αR(t)-α P (t) where α R (t) are the effective Regge and Pomeron trajectories respectively. The data in K − p are compatible with exchange degeneracy. The results inp¯p show an important structure for |t|> 0.3 (GeV/c) 2 demonstrating the existence of a large helicity flip amplitude.

2 data tables match query

Polarization Measurements in pi+ p, K+ p and p p Elastic Scattering at 45-GeV/c and Comparison with Regge Phenomenology

The SACLAY-SERPUKHOV-DUBNA-MOSCOW collaboration Gaidot, A. ; Bruneton, C. ; Bystricky, J. ; et al.
Phys.Lett.B 61 (1976) 103-106, 1976.
Inspire Record 113043 DOI 10.17182/hepdata.27714

The polarization parameter P has been measured for elastic π + p, K + p and pp scattering at 45 GeV/c. Four-momentum transfer ranges from −0.08 to −1.1 (GeV/) 2 for pp, and from −0.08 to −0.9 (GeV/) 2 for π + p and K + p. The energy dependence of the polarization P ( t ) in π + p and in K + p above 6 GeV/c incident momentum is compatible with interference between pomeron and Regge poles. On the other hand, the polarization in p p elastic scattering decreases faster than ordinary Regge model predictions. This result can be explained by interference between non flip and flip amplitudes of the pomeron, leading to negative values for the polarization.

2 data tables match query

No description provided.

No description provided.


MEASUREMENT OF THE SPIN CORRELATION PARAMETER A(00NN) FOR P P ELASTIC SCATTERING IN THE ENERGY RANGE FROM 0.83-GEV TO 1.1-GEV

Bystricky, J. ; Chaumette, P. ; Deregel, J. ; et al.
Nucl.Phys.B 262 (1985) 715-726, 1985.
Inspire Record 227730 DOI 10.17182/hepdata.33718

The spin correlation parameter A oonn (pp) and the analyzing power A oono (pp) have been measured in the angular region 45°< θ CM <90° at 0.834, 0.874, 0.934, 0.995 and 1.095 GeV beam kinetic energy using the SATURNE II polarized proton beam incident on the polarized proton target.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Analyzing Power and Spin Correlations in $N P$ Elastic Scattering at 0.744-{GeV} and 0.794-{GeV} Using a Deuteron Polarized Beam

De Lesquen, A. ; Lehar, F. ; Van Rossum, L. ; et al.
Nucl.Phys.B 304 (1988) 673-686, 1988.
Inspire Record 268253 DOI 10.17182/hepdata.33258

The np and the pp analyzing powers A oono d and spin correlations A oonn d and A oosk d were measured simultaneously using the SATURNE II polarized deuteron beam at 0.744 and 0.794 GeV/nucleon. The results for the pp observables coincide with the free pp elastic scattering data. We thus can assume that also the np analyzing power A oono d and spin correlations A oonn d and A oosk d are equal to those for scattering of free polarized neutrons. The np data cover the angular region 95°⩽ θ CM ⩽122°. Our results for A oono d (np) confirm the phase-shift analysis predictions but spin correlations A oonn d (np) and A oosk d (np) have never been measured in this energy region and will considerably affect the PSA solution. Present results allow conclusions about the angular dependence near the minimum of A oono (np) and A oonn (np) in the vicinity of 0.8 GeV.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

The p p elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Beddo, M. ; et al.
Nucl.Phys.A 637 (1998) 231-242, 1998.
Inspire Record 478006 DOI 10.17182/hepdata.36350

A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .

19 data tables match query

Analysing power measurements at a fixed laboratory angle of 13.9 degrees.

No description provided.

No description provided.

More…

Angular dependence of the pp elastic-scattering analyzing power between 0.8 and 2.8 GeV. II. Results for higher energies

Allgower, C.E. ; Ball, J. ; Beddo, M.E. ; et al.
Phys.Rev.C 60 (1999) 054002, 1999.
Inspire Record 508562 DOI 10.17182/hepdata.25565

Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic-scattering single spin parameter Aooon=Aoono=AN=P. The c.m. angular range is typically 60–100°. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed, but no rapid changes are observed.

20 data tables match query

Measured values of the P P analysing power at kinetic energy 0.795 GeV. Therelative and additive systematic errors are +- 0.018 and 0.0007.

Measured values of the P P analysing power at kinetic energy 1.975 GeV. Therelative and additive systematic errors are +- 0.045 and 0.002.

Measured values of the P P analysing power at kinetic energy 2.035 GeV fromrun I. The relative and additive systematic errors are +- 0.044 and 0.002.

More…

Angular dependence of the p p elastic scattering analyzing power between 0.8-GeV and 2.8-GeV. 1. Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 60 (1999) 054001, 1999.
Inspire Record 508563 DOI 10.17182/hepdata.25566

Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.

21 data tables match query

Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.

Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.

Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.

More…

Polarization in Elastic Scattering of pi+, K+ Mesons and Protons on Protons at 45-GeV/c

The Serpukhov-Saclay-Dubna-Moscow collaboration Bruneton, C. ; Bystricky, J. ; Gaidot, A. ; et al.
Sov.J.Nucl.Phys. 25 (1977) 198, 1977.
Inspire Record 108993 DOI 10.17182/hepdata.19052
1 data table match query

No description provided.


MEASUREMENT OF THE SPIN CORRELATION PARAMETER A(00NN) AND OF THE ANALYZING POWER FOR P P ELASTIC SCATTERING IN THE ENERGY RANGE FROM 0.5-GEV TO 0.8-GEV

Bystricky, J. ; Chaumette, P. ; Deregel, J. ; et al.
Nucl.Phys.B 262 (1985) 727-743, 1985.
Inspire Record 227731 DOI 10.17182/hepdata.33710

The spin correlation parameter A oonn and the analyzing powers A oono and A ooon were measured simultaneously, in the energy range 0.5–0.8 GeV and in the angular region 40°–80° CM. The experiment used the polarized proton beam of SATURNE II and the Saclay frozen spin polarized target.

15 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Polarization in K- p Elastic Scattering at Low-Energies

Ehrlich, R.D. ; Lovett, B. ; Mishina, M. ; et al.
Phys.Lett.B 71 (1977) 455-459, 1977.
Inspire Record 126323 DOI 10.17182/hepdata.27506

The polarization parameter has been measured in K − p elastic scattering at eight incident beam momenta between 650 MeV/ c and 1071 MeV/ c throughout a center of mass angular range of −0.75 < cos θ ∗ < 0.85 . Experimental results and coefficients of Legendre polynomial fits to the data are presented and compared with other measurements and partial wave analysis.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Polarization in pp Elastic Scattering at Large Momentum Transfers

Booth, N.E. ; Conforto, G. ; Esterling, R.J. ; et al.
Phys.Rev.Lett. 21 (1968) 651-652, 1968.
Inspire Record 944913 DOI 10.17182/hepdata.21669

Measurements of the polarization in pp elastic scattering have been made at 5.15 GeV/c over the range −t=0.2 to 1.8 (GeV/c)2. The data are compared with a Regge-pole model, and with the diffraction model of Durand and Lipes in which the absorptive part of the pp interaction is derived from the electromagnetic form factor of the proton. The latter model reproduces the t dependence of the experimental data in a qualitative way.

1 data table match query

Measurement of the Recoil Proton Polarization in Elastic $\pi^-p$ Scattering at $T_\pi=410$ and 492 MeV

Bareyre, P. ; Bricman, C. ; Longo, M.J. ; et al.
Phys.Rev.Lett. 14 (1965) 878-880, 1965.
Inspire Record 945162 DOI 10.17182/hepdata.21824

None

2 data tables match query

No description provided.

No description provided.


Measurement of the Recoil Proton Polarization in Elastic pi+p Scattering at Tpi=410and492 MeV

Bareyre, P. ; Bricman, C. ; Longo, M.J. ; et al.
Phys.Rev.Lett. 14 (1965) 198-201, 1965.
Inspire Record 944925 DOI 10.17182/hepdata.21847

None

2 data tables match query

No description provided.

No description provided.


Measurements of the polarization in proton proton elastic scattering from 2.50 to 5.15 gev/c

Parry, J.H. ; Booth, N.E. ; Conforto, G. ; et al.
Phys.Rev.D 8 (1973) 45-63, 1973.
Inspire Record 81983 DOI 10.17182/hepdata.22058

In an experiment at the Argonne Zero-Gradient Synchrotron we have measured values of the polarization parameter P(t) in the elastic scattering of negative pions, positive pions, positive kaons, and protons on protons at several incident laboratory momenta from 2.50 to 5.15 GeVc, and for values of the momentum transfer variable −t from 0.2 to 2.0 (GeVc)2. The final results from p−p elastic scattering presented here extend our knowledge of the polarization to much larger values of −t than the results of previous measurements. Outstanding features revealed by these polarization data include (1) the development of a dip at about −t=0.7 (GeVc)2, with (2) a substantial secondary peak at larger values of −t and (3) the gradual diminution of the maximum polarization with increasing energy. It is possible to fit the t dependence of the experimental results with a simple model. The energy dependence of the polarized cross sections is also discussed.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Proton-proton spin correlation measurements at 200 MeV with an internal target in a storage ring

Haeberli, W. ; Lorentz, B. ; Rathmann, F. ; et al.
Phys.Rev.C 55 (1997) 597-613, 1997.
Inspire Record 464240 DOI 10.17182/hepdata.25711

Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.

1 data table match query

No description provided.


Analyzing powers for pi+- p(pol.) elastic scattering between 87-MeV and 263-MeV.

Hofman, G.J. ; Smith, G.R. ; Ambardar, T. ; et al.
Phys.Rev.C 58 (1998) 3484-3493, 1998.
Inspire Record 483008 DOI 10.17182/hepdata.25722

Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.

18 data tables match query

Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

More…