The Structure of the Forward Elastic Cross-Section in 10-GeV-14-GeV Range

Carnegie, R.K. ; Cashmore, R.J. ; Davier, M. ; et al.
Phys.Lett.B 59 (1975) 313-316, 1975.
Inspire Record 100641 DOI 10.17182/hepdata.27763

The logarithmic slope of the differentical cross section for K ± p elastic scattering at 10 and 14 GeV, and for π ± p and p ± p at 10GeV has been measured. Rich structure is observed in the forward slope for all processes, which is well accounted for by the properties of a peripheral exchange amplitude for the nonexotic reactions, and by a peripheral component of the diffractive amplitude as clearly seen in the exotic processes, K ± p and pp.

0 data tables match query

$K^- + p$ elastic scattering at 3.46 GeV/c

Gordon, J. ;
Phys.Lett. 21 (1966) 117-120, 1966.
Inspire Record 1389617 DOI 10.17182/hepdata.29930

1691 events were fitted to K - p elastic scatters at a K - momentum of 3.46 GeV/ c . The differential cross section as a function of 4 momentum transfer was fitted to exp ( A + Bt + Ct 2 ) with A = 3.7 B = 8.7 ( GeV / c ) −2 and C = 2.0 ( GeV / c ) −4 . The distribution is consistent with zero real part for the forward scattering amplitude.

0 data tables match query

Polarization Measurements in π p+ p and K p+ p elastic scattering at 6 and 12 GeV/ c with the CERN polarized deuteron target

Fujisaki, M. ; Babou, M. ; Bystricky, J. ; et al.
Nucl.Phys.B 151 (1979) 206-212, 1979.
Inspire Record 145595 DOI 10.17182/hepdata.34795

The polarization in π + p → π + p and K + p → K + p has been measured at 6 and 12 GeV/ c in the four-momentum transfer interval 0.1 ⩽ | t | ⩽ 2.0 (GeV/ c ) 2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K + p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/ c

0 data tables match query

pi- p and K- p Elastic Scattering at 6.2-GeV/c

Buran, T. ; Eide, A. ; Helgaker, P. ; et al.
Nucl.Phys.B 111 (1976) 1-19, 1976.
Inspire Record 108747 DOI 10.17182/hepdata.35657

Data on 6.2 GeV/ c π − p and K − p elastic scattering cross sections are presented in the range 0.3 < − t < 10.7 (GeV/ c ) 2 .

0 data tables match query

New Data on K- p --> K- p and anti-K0 n and a Partial Wave Analysis Between 1840-MeV and 2234-MeV Center-of-Mass Energy

Hemingway, R.J. ; Eades, J. ; Harmsen, D.M. ; et al.
Nucl.Phys.B 91 (1975) 12-32, 1975.
Inspire Record 98477 DOI 10.17182/hepdata.32035

The angular distributions of the reactions K - p → K - p and K - p → K K 0 n have been measured at 23 incident K - momenta between 1.136 and 1.798 ifGeV/c using the bubble chamber technique. These data, together with other published data on the same reactions, including K - p polarisations, K̄N total cross sections, and measurements of Re ƒ(0)/ Im ƒ(0) , have been analysed in terms of partial-wave amplitudes. Resonance behaviour is confirmed for the P 03 partial wave at 1890 MeV. The resonance parameters of the F 15 (1915), F 17 (2030) and G 07 (2100) have been redetermined. No evidence has been found for new resonances coupling significantly to K K N in the energy region explored.

0 data tables match query

Asymmetry and differential cross section for elastic scattering of K- mesons by polarized protons

Zeller, M. ; Ehrlich, R.D. ; Etkin, A. ; et al.
In *Durham Conference, Hyperon Resonance - 70*, Durham 1970, 169, 1970.
Inspire Record 63648 DOI 10.17182/hepdata.37181

abstract only

0 data tables match query

Charge Transfer in Different Final States of $\pi^- p$ Interactions at 5-{GeV}/$c$

Lebedev, R.M. ; Chadraa, B. ; Sharkhu, G. ;
1980.
Inspire Record 156930 DOI 10.17182/hepdata.39276
0 data tables match query

Search for solutions of the phase-shift analysis of pp interactions at 970 MeV

Vovchenko, V.G. ; Grebenyuk, O.G. ; Fedorov, O.Ya. ;
Yad.Fiz. 44 (1986) 456-459, 1986.
Inspire Record 239695 DOI 10.17182/hepdata.38007

A random search for solutions of the phase-shift analysis of pp scattering at 970 MeV is carried out. Solutions were selected according to the correct position of the zero of trajectory I of the Barrelet amplitude f1 in addition to the statistical criteria. Two pairs of solutions with similar phase shifts are found as a result. Two of these solutions have been found before

0 data tables match query

Measurement of the Slope of the Diffraction Peak for Elastic pp Scattering from 8-GeV to 400-GeV.

Bartenev, V. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 31 (1973) 1088-1091, 1973.
Inspire Record 81722 DOI 10.17182/hepdata.21381

The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.

0 data tables match query

Elastic pp scattering in the region of the coulomb interference at momenta 1.1 - 1.7 GeV/c

Vorob'ev, A.A. ; Denisov, A.S. ; Zalite, Yu.K. ; et al.
JETP Lett. 17 (1973) 108-110, 1973.
Inspire Record 1393129 DOI 10.17182/hepdata.39943
0 data tables match query

PHASE SHIFT ANALYSIS OF THE p p AMPLITUDES IN THE ENERGY RANGE 380-MeV TO 1000-MeV

Shklyarevsky, G.M. ;
Sov.J.Nucl.Phys. 47 (1988) 76-82, 1988.
Inspire Record 231081 DOI 10.17182/hepdata.17359
0 data tables match query

Interference measurements of the real part of the forward pi- p elastic scattering amplitude at 2.44 and 1.91 gev/c momenta

Vorobev, G.G. ; Govorun, N.N. ; Nomofilov, A.A. ; et al.
Yad.Fiz. 19 (1974) 849-860, 1974.
Inspire Record 95139 DOI 10.17182/hepdata.19252
0 data tables match query

Real part of spinless p p-scattering amplitude at zero angle in the energy region from 0.135 to 1.700 gev/c

Amirkhanov, I.V. ; Bystritskii, V.M. ; Vertogradov, L.S. ; et al.
Yad.Fiz. 17 (1973) 1222-1224, 1973.
Inspire Record 85077 DOI 10.17182/hepdata.19177
0 data tables match query

INVESTIGATION OF THE PROTON PROTON ELASTIC SCATTERING AMPLITUDE AT THE ENERGY OF 1-GEV. (IN RUSSIAN)

Komarov, E.N. ; Shklyarevsky, G.M. ;
Yad.Fiz. 31 (1980) 1469-1475, 1980.
Inspire Record 158065 DOI 10.17182/hepdata.18230
0 data tables match query

Direct Experimental Reconstruction of the $P P$ Elastic Scattering Amplitudes Between 447-{MeV} and 579-{MeV}

Hausammann, R. ; Heer, E. ; Hess, R. ; et al.
Phys.Rev.D 40 (1989) 22-34, 1989.
Inspire Record 285139 DOI 10.17182/hepdata.23146

A direct experimental reconstruction of the five complex pp elastic-scattering amplitudes has been performed at 447, 497, 517, 539, and 579 MeV. The reconstruction is done over the c.m. angles from 38° to 90° and is based on either 11 or 15 spin observables depending on the angular range. The reconstructed amplitudes are presented and compared to phase-shift analysis. A smooth energy behavior is observed for the amplitudes.

0 data tables match query

Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

0 data tables match query

Elastic forward and backward scattering of pi- and k-mesons at 5.2 and 7.0 gev/c

Baker, W.F. ; Berkelman, Karl ; Carlson, P.J. ; et al.
Nucl.Phys.B 25 (1971) 385-410, 1971.
Inspire Record 68816 DOI 10.17182/hepdata.33834

We present results of measurements of the differential cross sections for the following elastic-scattering reactions: (i) π + p at 5.2 and 7.0 GeV/ c in the range −1 < u < 0.02 (GeV/ c ) 2 , (ii) π − p at 7.0 GeV/ c in the range −0.7 < u < 0.05 (GeV/ c ) 2 , (iii) K + p at 5.2 and 7.0 GeV/ c in the ranges −1 < t < −0.01 (GeV/ c ) 2 and −1 < u < 0 (GeV/ c ) 2 , and K − p at 7.0 GeV/ c in the range −1 < u < 0 (GeV/ c ) 2 .

0 data tables match query

Coulomb-Nuclear Interference in pi+- p and K+- p Elastic Scattering Below 3-GeV: Measurements, Real Parts and K+- p Dispersion Relations

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 105 (1976) 365-430, 1976.
Inspire Record 101037 DOI 10.17182/hepdata.13243

The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.

0 data tables match query

Polarization in backward elastic pi+ p scattering at 2.0, 3.5 and 4.0 gev/c

Bradamante, F. ; Conetti, S. ; Daum, C. ; et al.
Nucl.Phys.B 56 (1973) 356-380, 1973.
Inspire Record 84069 DOI 10.17182/hepdata.6773

Data on polarization in backward elastic π + p scattering at 2.0, 3.5 and 4.0 GeV/ c are presented. The data at 2.0 GeV/ c are compared with the result of a recent phase-shift analysis. Our data at 3.5 and 4.0 GeV/ c , and existing data above 3 GeV/ c , show no significant energy dependence of the polarization over the measured u -range. A comparison with Regge models and with results from amplitude analysis is made.

0 data tables match query

Measurement of the polarization parameter in pi+- p, k+- p, p p, and anti-p p elastic scattering at 6 gev/c

Borghini, M. ; Dick, L. ; Di Lella, L. ; et al.
Phys.Lett.B 31 (1970) 405-409, 1970.
Inspire Record 63191 DOI 10.17182/hepdata.6078

Experimental results are presented for the polarization parameter P 0 in π ± p , K ± p , pp, and p ̄ p elastic scattering at 6 GeV/ c , and in the range of the invariant four-momentum transfer squared − t from 0.05 to ∼ 2.0 (GeV/ c ) 2 .

0 data tables match query

Polarization parameter in elastic proton proton scattering from 0.75-GeV to 2.84-GeV

Neal, Homer A. ; Longo, Michael J. ;
Phys.Rev. 161 (1967) 1374-1383, 1967.
Inspire Record 51386 DOI 10.17182/hepdata.6264

The polarization parameter in elastic proton-proton scattering has been measured at 0.75, 1.03, 1.32, 1.63, 2.24, and 2.84 GeV by employing a double-scattering technique. An external proton beam from the Brookhaven Cosmotron was focused on a 3 in.-long liquid-hydrogen target and the elastic recoil and scattered protons were detected in coincidence by scintillation counters. The polarization of the recoil beam was determined from the azimuthal asymmetry exhibited in its scattering from a carbon target. This asymmetry was measured by a pair of scintillation-counter telescopes which symmetrically viewed the carbon target. The analyzing power of this system was previously determined in an independent calibration experiment employing a 40%-polarized proton beam at the Carnegie Institute of Technology synchrocyclotron. False asymmetries were cancelled to a high order by periodically rotating the analyzer 180° about the recoil beam line. Spark chambers were utilized to obtain the spatial distribution of the beam as it entered the analyzer; this information allowed an accurate determination of the corrections necessary to compensate for any misalignment of the axis of the analyzer relative to the incident-beam centroid. Values of the polarization parameter as a function of the center-of-mass scattering angle are given for each incident beam energy. The predictions of the Regge theory for polarization in elastic proton-proton scattering and recently published phase-shift solutions are compared with the experimental results. Surprisingly good agreement with the Regge predictions is found despite the low energies involved.

0 data tables match query

Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

0 data tables match query

Measurement of the $P P$ Analyzing Power A(00n0) in a Large Angular Region Between 0.88-{GeV} and 2.7-{GeV}

Perrot, F. ; Fontaine, J.M. ; Lehar, F. ; et al.
Nucl.Phys.B 294 (1987) 1001-1012, 1987.
Inspire Record 255229 DOI 10.17182/hepdata.33562

The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.

0 data tables match query

A Measurement of the Polarization Parameter in Large Angle Proton Proton Elastic Scattering at 7.9-GeV/c

Aschman, D.G. ; Crabb, D.G. ; Green, K. ; et al.
Nucl.Phys.B 125 (1977) 349-368, 1977.
Inspire Record 125075 DOI 10.17182/hepdata.35322

The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.

0 data tables match query

The Normalization of p p Polarization Between 200-MeV and 520-MeV

Amsler, C. ; Bugg, D.V. ; Axen, D. ; et al.
J.Phys.G 4 (1978) 1047-1053, 1978.
Inspire Record 135489 DOI 10.17182/hepdata.38559

The absolute normalisation of the polarisation in pp elastic scattering at 24 degrees lab has been determined by means of a double-scattering experiment to an accuracy of +or-1.5% at five energies between 200 and 520 MeV.

0 data tables match query