Polarized target asymmetry in pion proton bremsstrahlung at 298-MeV

Bosshard, A. ; Amsler, Claude ; Bistirlich, J.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2619-2622, 1990.
Inspire Record 303404 DOI 10.17182/hepdata.22827

First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

1 data table match query

No description provided.


Energy Dependence of Spin Spin Forces in 90-degrees (Center-of-mass) Elastic $p p$ Scattering

Lin, A. ; O'Fallon, J.R. ; Ratner, L.G. ; et al.
Phys.Lett.B 74 (1978) 273-276, 1978.
Inspire Record 129169 DOI 10.17182/hepdata.27461

We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .

2 data tables match query

ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.

THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.


Measurement of Proton Proton Elastic Scattering in Pure Initial Spin States at 11.75-GeV/c

Abe, K. ; Fernow, Richard C. ; Mulera, T.A. ; et al.
Phys.Lett.B 63 (1976) 239-244, 1976.
Inspire Record 114488 DOI 10.17182/hepdata.27638

The elastic cross section for proton proton scattering at 11.75 GeV/ c was measured at the Argonne ZGS using a 50% polarized target. In the range p ⊥ 2 =0.6 → 2.2 (GeV/ c ) 2 we obtained precise measurements of d σ d t(ij) for the ⇈ ⇊, and ⇅ initial spin states perpendicular to the scattering plane. We confirmed that the asymmetry parameter, A , decreases with energy in the diffraction peak, but is approximately energy-independent at large p ⊥ 2 . We found that the spin correlation parameter c nn acquires rather dramatic structure, and at large p ⊥ 2 seems to grow with energy.

1 data table match query

No description provided.


Simultaneous Measurement of 2 and 3 Spins in Proton Proton Elastic Scattering at 6-GeV/c

Fernow, Richard C. ; Gray, S.W. ; Krisch, A.D. ; et al.
Phys.Lett.B 52 (1974) 243-246, 1974.
Inspire Record 89681 DOI 10.17182/hepdata.27931

The elastic cross section for proton proton scattering at 6 GeV c was measured using a 70% polarized beam and a 75% polarized target at the Argonne ZGS. In the range P ⊥ 2 = 0.5 → 2.0( GeV c ) 2 we obtained small error measurements for the ↑↑, ↓↓ and ↑↓ initial spin states perpendicular to the scattering plane. At P ⊥ 2 = 0.5 we also measured the recoil spin and found that the 5 different cross sections were very unequal.

2 data tables match query

No description provided.

No description provided.


Measurement of Proton Proton Elastic Scattering at 6-GeV/c in Polarized Initial and Final Spin States

Borghini, M. ; De Boer, W. ; Fernow, Richard C. ; et al.
Phys.Rev.D 17 (1978) 24-41, 1978.
Inspire Record 134418 DOI 10.17182/hepdata.4518

The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range P⊥2=0.60−1.0 (GeV/c)2 using a 65% polarized target and a 75% polarized proton beam of intensity 3 × 109 protons/pulse. The polarization of the recoil proton was simultaneously measured with a well calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at our largest P⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data gives the magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the four double-flip transversity cross sections are nonzero.

4 data tables match query

No description provided.

THE FIVE INDEPENDENT PURE FOUR-SPIN CROSS SECTIONS AS DERIVED FROM THE EIGHT MEASURED THREE-SPIN CROSS SECTIONS ASSUMING P AND T INVARIANCE. THE ABSOLUTE DIFFERENTIAL CROSS SECTION VALUES ASSUME THAT THE SPIN-AVERAGED D(SIG)/DT IS 2.25, 1.17, 0.365 AND 0.167 MB/GEV**2 FOR EACH VALUE OF PT**2 RESPECTIVELY.

WOLFENSTEIN PARAMETERS. POL(NAME=A) IS (N000) OR (0N00), THE ANALYZING POWER AVERAGED OVER TARGET OR BEAM POLARIZATION. POL(NAME=P) IS (00N0), THE POLARIZATION PARAMETER. TIME-REVERSAL INVARIANCE REQUIRES THAT P = A. POL.POL(NAME=CNN) IS (NN00) USING T-INVARIANCE. POL.POL(NAME=DNN) IS (0N0N). POL.POL(NAME=KNN) IS (N00N). POL.POL(NAME=C3N) IS A COMPONENT OF THE TRIPLE SPIN CORRELATION TENSOR. PARITY INVARIANCE REQUIRES THAT C3N = P.

More…

Spin Dependence of High p-Transverse**2 Elastic p p Scattering

Crabb, D.G. ; Fernow, Richard C. ; Hansen, P.H. ; et al.
Phys.Rev.Lett. 41 (1978) 1257, 1978.
Inspire Record 7117 DOI 10.17182/hepdata.20867

We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.

1 data table match query

THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table match query

No description provided.


The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

3 data tables match query

No description provided.

2.2 GeV point taken from Brown et al., PR D31(85) 3017.

No description provided.


Measurement of the Analyzing Power for $p p$ (Polarized) $\to p p$ at $p^-$transverse**2 = 6.5-{GeV}/$c^2$

Cameron, P.R. ; Crabb, D.G. ; DeMuth, G.E. ; et al.
Phys.Rev.D 32 (1985) 3070, 1985.
Inspire Record 216507 DOI 10.17182/hepdata.23543

The spin analyzing power A in 28-GeV/c proton-proton elastic scattering was measured at P⊥2=6.5 (GeV/c)2 using a polarized proton target and a high-intensity unpolarized proton beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The result of (24±8)% confirms that the analyzing power is large and rising in the large-P⊥2 region.

1 data table match query

No description provided.


MEASUREMENT OF P (POLARIZED) P (POLARIZED) ---> P P WITH A 16.5-GEV/C POLARIZED PROTON BEAM

Brown, K.A. ; Bruni, R.J. ; Cameron, P.R. ; et al.
Phys.Rev.D 31 (1985) 3017-3020, 1985.
Inspire Record 220234 DOI 10.17182/hepdata.23579

Using the new Brookhaven Alternating Gradient Synchrotron polarized proton beam and our polarized proton target, we measured the spin-spin correlation parameter Ann in 16.5-GeV/c proton-proton elastic scattering. We found an Ann of (6.1±3.0)% at P⊥2=2.2 (GeV/c)2. We also measured the analyzing power A in two independent ways, providing a good test of possible experimental errors. Comparing our new data with 12-GeV Argonne Zero Gradient Synchrotron data shows no evidence for strong energy dependence in Ann in this medium-P⊥2 region.

1 data table match query

ERROR CONTAINS BOTH SYSTEMATIC AND STATISTICAL UNCERTAINTY.