Study of the two-charged-particle final states of 3.9-gev/c pi+- p interactions including a longitudinal-momentum analysis of the one-pion- production channels

Bastien, P.L. ; Carmel, Z. ; Dao, F.T. ; et al.
Phys.Rev.D 3 (1971) 2047-2064, 1971.
Inspire Record 68000 DOI 10.17182/hepdata.23677

We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.

3 data tables match query

No description provided.

No description provided.

No description provided.


Proton-Proton Scattering at 1.48 BeV

Eisner, A.M. ; Hart, E.L. ; Louttit, R.I. ; et al.
Phys.Rev. 138 (1965) B670-B677, 1965.
Inspire Record 944962 DOI 10.17182/hepdata.461

A sample of 2657 proton-proton scattering events at 1.48 BeV has been analyzed. The elastic cross section is 19.86 mb, and the elastic scattering is consistent with a simple opaque-disk optical model with R=0.91 F and 1−a=0.864. The dominant feature of the inelastic scattering is the production of the (3/2, 3/2) isobar. The reaction p+p→p+n+π+ is interpreted satisfactorily in terms of the one-pion-exchange model.

2 data tables match query

No description provided.

No description provided.