Scattering of 151- and 188-Mev Positive Pions by Protons

Homa, George ; Goldhaber, Gerson ; Lederman, Leon M. ;
Phys.Rev. 93 (1954) 554-561, 1954.
Inspire Record 944934 DOI 10.17182/hepdata.26417

A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).


pi-p ELASTIC SCATTERING AND SINGLE PION PRODUCTION AT 0.939-BeV/c

Baggetti, Lee, Jr. ;
UCRL-8302, 1958.
Inspire Record 44228 DOI 10.17182/hepdata.416

None

2 data tables match query

No description provided.

No description provided.


Elastic pi+-p and p-p Scattering at 1.23 Bev/c

Roellig, L.O. ; Glaser, D.A. ;
Phys.Rev. 116 (1959) 1001-1007, 1959.
Inspire Record 944991 DOI 10.17182/hepdata.736

Elastic π+−p scattering at 1.1 Bev and elastic p−p scattering at 582 Mev have been measured using a propane bubble chamber. On the basis of 661 identified π+−p elastic scatterings found in the scanning of 1.726×106 cm of pion track, the total elastic cross section is found to be 12.3±1.2 mb. The differential cross section is rather isotropic at large angles and exhibits a strong peak for small forward scattering angles. If the forward peak is interpreted as diffraction scattering according to the optical model, the data are best fitted by a proton with a π+−p interaction radius, R=(0.99−0.11+0.13)×10−13 cm and an opacity, O=0.70−0.07+0.06. The total cross section for p−p elastic scattering at 582 Mev was found to be 24.2±1.6 mb on the basis of 2442 elastic scatterings observed in the scanning of 3.000×106 cm of proton track. Both differential and total p−p cross sections are in excellent agreement with the results of counter experiments in this energy region.

2 data tables match query

No description provided.

No description provided.


$\{pi}-p$ interactions at 1.59 GeV/c

Alitti, J. ; Baton, J.P. ; Berthelot, A. ; et al.
Nuovo Cim. 29 (1963) 515, 1963.
Inspire Record 851185 DOI 10.17182/hepdata.980

Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.

3 data tables match query

No description provided.

No description provided.

No description provided.


Elastic-Differential Cross Section of pi++p at 1.5, 2.0, and 2.5 BeV/c

Cook, Victor ; Cork, Bruce ; Holley, William R. ; et al.
Phys.Rev. 130 (1963) 762-765, 1963.
Inspire Record 944975 DOI 10.17182/hepdata.599

We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of Positive Pions by Protons in the Energy Range 500-1600 MeV

Helland, Jerome A. ; Devlin, Thomas J. ; Hagge, Donald E. ; et al.
Phys.Rev. 134 (1964) B1062-B1078, 1964.
Inspire Record 46850 DOI 10.17182/hepdata.597

Differential cross sections for the elastic scattering of positive pi mesons by protons were measured at the Berkeley Bevatron at pion laboratory kinetic energies between 500 and 1600 MeV. Fifty scintillation counters and a matrix coincidence system were used to identify incoming pions and detect the recoil proton and pion companions. Results were fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections were obtained by integrating under the fitted curves. The coefficients of the cosine series are displayed, plotted versus the laboratory kinetic energy of the pion. The most striking features of these curves are the large positive value of the coefficient of cos6θ*, and the large negative value of the coefficient of cos4θ*, both of which maximize in the vicinity of the 1350-MeV peak in the total cross section. These results indicate that the most predominant state contributing to the scattering at the 1350-MeV peak has total angular momentum J=72, since the coefficients for terms above cos6θ* are negligible at this energy. One possible explanation is that the 1350-MeV peak is the result of an F72 resonance lying on the same Regge-pole trajectory as the (32, 32) resonance near 195 MeV.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of Negative Pions on Protons in the Energy Range 500-1000 MeV

Helland, Jerome A. ; Wood, Calvin D. ; Devlin, Thomas J. ; et al.
Phys.Rev. 134 (1964) B1079-B1086, 1964.
Inspire Record 46851 DOI 10.17182/hepdata.598

Differential cross sections for the elastic scattering of negative pi mesons on protons (π−−p→π−−p) were measured at the Berkeley Bevatron at five laboratory kinetic energies of the pion between 500 and 1000 MeV. The results were least-squares fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections for π−−p→π−−p were obtained by integrating under the fitted curves. The coefficients of the cosine series are shown plotted versus the incident pion laboratory kinetic energy. These curves display as a striking feature a large value of the coefficient of cos5θ* peaking in the vicinity of the 900-MeV resonance. This implies that a superposition of F52 and D52 partial waves is prominent in the scattering at this energy, since the coefficients for terms above cos5θ* are negligible. One possible explanation is that the F52 enhancement comes from an elastic resonance in the isotopic spin T=12 state, consistent with Regge-pole formalism, and the D52 partial-wave state may be enhanced by inelastic processes. At 600 MeV the values of the coefficients do not seem to demand the prominence of any single partial-wave state, although the results are compatible with an enhancement in the J=32 amplitude. A table listing quantum numbers plausibly associated with the various peaks and "shoulders" seen in the π±−p total cross-section curves is presented.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

pi--p Interactions at 604 MeV

Vittitoe, C.N. ; Riley, B.R. ; Fickinger, W.J. ; et al.
Phys.Rev. 135 (1964) B232-B240, 1964.
Inspire Record 46855 DOI 10.17182/hepdata.594

The interactions of 604 MeV π− mesons in a hydrogen bubble chamber have been systematically analyzed. In 33 000 pictures a total of 8052 usable events were found, corresponding to cross sections of 18.9±1.3 mb for σ(elastic), 4.98±0.54 mb for σ(π−pπ0), 7.87±0.91 mb for σ(π−nπ+), 14.0±1.0 mb for σ(neutrals), with σ(two−pionproduction)<0.2 mb, for a total cross section of 45.9±1.9 mb at this energy. The angular distribution for elastic scattering was fitted with a fifth-order polynomial in cosθ which gave a value of dσdΩ(0°) consistent with dispersion theory. The pion-pion effective-mass distributions for both single-pion-production channels showed pronounced peaking at high mass values, strongly inconsistent with simple isobar-production kinematics. Simple one-pion exchange does not appear to play a significant role.

1 data table match query

No description provided.


pi- p interactions at 646-MeV

Oliver, John D. ;
CAR-882-8, 1965.
Inspire Record 1087540 DOI 10.17182/hepdata.1344

None

2 data tables match query

No description provided.

No description provided.


pi--p Interactions at 683 MeV/c

Burnstein, R.A. ; Charlton, G.R. ; Day, T.B. ; et al.
Phys.Rev. 137 (1965) B1044-B1052, 1965.
Inspire Record 944965 DOI 10.17182/hepdata.983

Interactions of 683-MeV/c negative pions with protons were investigated using the BNL 14-in. hydrogen bubble chamber in a 17-kG field. Two thousand elastic scatterings were analyzed, yielding a cross section of 18.9±1.0 mb. No evidence for powers of cosθ higher than the second was observed in the elastic angular distribution. The angular distribution obtained was dσdω=(0.384±0.026)+(1.70±0.06)cosθ+(3.36±0.11)cos2θ mb/sr. The single-pion production reactions π−+p→π−+π0+p and π−+p→π−+π++n were studied in detail. A total of 441 π0 productions and 833 π+ productions were analyzed giving cross sections of 3.99±0.50 and 7.50±0.80 mb, respectively. The differential distributions for these inelastic processes are presented and compared with the predictions of the model of Olsson and Yodh. The distribution of events on the Dalitz plots for π0 production is accounted for by the model. However, for the π+ reaction, the model (so far developed) does not describe adequately the distribution of events on the Dalitz plot. In particular, the model fails to account for the enhancement at high (π+π−) effective masses in ππ mass distribution. The center-of-mass angular distributions for π0 and π+ production reactions are presented and compared with the model.

2 data tables match query

No description provided.

No description provided.