Measurement of Differential Cross-Sections for Elastic K+ p Scattering in the Momentum Range 0.7-GeV/c to 1.9-GeV/c

Charles, B.J. ; Cowan, I.M. ; Edwards, T.R.M. ; et al.
Nucl.Phys.B 131 (1977) 7-53, 1977.
Inspire Record 126513 DOI 10.17182/hepdata.8361

Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.

19 data tables match query

No description provided.

No description provided.

No description provided.

More…

Differential cross-sections for elastic scattering of positive kaons on protons in the momentum range 0.9 to 1.9 gev/c

Charles, B.J. ; Cowan, I.M. ; Edwards, T.R.M. ; et al.
Phys.Lett.B 40 (1972) 289-292, 1972.
Inspire Record 75720 DOI 10.17182/hepdata.28271

None

1 data table match query

No description provided.


Measures of the differential effective sections $\pi ±p$ to 410 MeV and 490 MeV forwards

Banner, M. ; Detoeuf, J.F. ; Fayoux, M.L. ; et al.
Nuovo Cim.A 50 (1967) 431-448, 1967.
Inspire Record 1185325 DOI 10.17182/hepdata.896

Measurements of π±p elastic differential cross-sections have been performed in the forward direction, using a missing-mass spark chamber spectrometer. The films have been seanned by an automatic apparatus. A phase-shift analysis of the experimental data has been done, leading to three solutions. Various experiments are proposed in order to resolve the ambiguities.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Pi- p forward elastic scattering near 1 gev/c

Abillon, J.M. ; Borg, A. ; Crozon, M. ; et al.
Nucl.Phys.B 46 (1972) 630-636, 1972.
Inspire Record 74955 DOI 10.17182/hepdata.8020

We have measured the differential cross section of the reaction π − p→ π − p in the range 0.92 ⩽ cos θ c.m. ⩽ 0.99 at 15 momenta between 0.875 and 1.580 GeV/ c . The results we report complete the available data; previous measurements of this reaction do not extend beyond cos θ c.m. =0.90. We compare our experimental results with dispersion relation predictions. A comparison of our results for B , the slope of the differential cross section, with earlier results shows many discrepancies.

17 data tables match query

No description provided.

No description provided.

No description provided.

More…

Backward elastic scattering from 875 to 1580 mev/c

Abillon, J.M. ; Borg, A. ; Crozon, M. ; et al.
Phys.Lett.B 32 (1970) 712-715, 1970.
Inspire Record 63081 DOI 10.17182/hepdata.5883

The differential cross sections for π − p elastic scattering have been measured near 180°, in the momentum range 875–1580 MeV/c. The results are compared with recent phase shift analysis, showing some notable discrepancies.

30 data tables match query

No description provided.

No description provided.

No description provided.

More…

pi--p Elastic Scattering at 1.44 Bev

Chretien, M. ; Leitner, J. ; Samios, N.P. ; et al.
Phys.Rev. 108 (1957) 383-389, 1957.
Inspire Record 45962 DOI 10.17182/hepdata.26863

An investigation of π−+p elastic scattering, made in a liquid propane bubble chamber, is reported. Identification of events is made on the basis of kinematics. The problem of contamination by pion scattering from protons bound in carbon is considered in some detail; it is shown that the latter requires a correction of only 4±2.5% of the total number of events. The angular distribution is presented. It shows a large diffraction peak at small angles and an approximately isotropic plateau over the backward hemisphere. The forward peak is fitted to a black-sphere diffraction pattern with a radius of (1.08±0.06)×10−13 cm. The total elastic cross section is found to be σe=10.1±0.80 mb.

1 data table match query

No description provided.


Pi-minus p elastic scattering at 2.51, 2.76, and 3.01 gev/c near t approximately equals -3 (gev/c)-squared

Fellinger, M. ; Gutman, E. ; Lamb, R.C. ; et al.
Phys.Rev.Lett. 23 (1969) 600-602, 1969.
Inspire Record 58788 DOI 10.17182/hepdata.21636

Differential cross sections for the elastic scattering of negative pions from hydrogen have been measured over a limited range of squared four-momentum transfer (t) in the vicinity of t≃−3 (GeV/c)2 for incident pion momenta of 2.51, 2.76, and 3.01 GeV/c. These measurements confirm the existence of a minimum in the differential cross section in this region of incident momentum and scattering angle. The minimum occurs at a smaller value of t [t≃−2.6 (GeV/c)2] than has been observed at higher momenta.

3 data tables match query

No description provided.

No description provided.

No description provided.


Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table match query

No description provided.


Determination of the Real Part of the Isospin Even Forward Scattering Amplitude of Pion Nucleon Scattering at 55-{MeV} as a Test of Low-energy Quantum Chromodynamics

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.Lett. 58 (1987) 648-650, 1987.
Inspire Record 246624 DOI 10.17182/hepdata.20153

The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.

1 data table match query

PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).


Small-angle proton - proton scattering cross-sections at 144 MeV

Jarvis, O.N. ; Whitehead, C. ; Shah, M. ;
Phys.Lett.B 36 (1971) 409-411, 1971.
Inspire Record 1388795 DOI 10.17182/hepdata.28406

The differential cross-section in proton-proton scattering at 144 ± 1.5 MeV has been measured over the Coulomb-nuclear interference region. When the present data are included in a phase-shift analysis the resultant phas-shifts are only slightly changed from their previous values.

1 data table match query

No description provided.