Elastic Proton-Proton Scattering at 2.24, 4.40, and 6.15 Bev

Cork, Bruce ; Wenzel, William A. ; Causey, Charles W. ;
Phys.Rev. 107 (1957) 859-867, 1957.
Inspire Record 944998 DOI 10.17182/hepdata.26883

Protons of the internal circulating beam of the Bevatron were scattered in a polyethylene target. Both scattered and recoil protons were detected by scintillation counters at angles which define elastic proton-proton events. An internal counter was located within a few inches of the beam to permit measurements at laboratory scattering angles as low as 2°. Absolute values are based on the calibration of the induction electrode that monitors the circulating beam. Total elastic cross sections obtained by integrating the differential spectra are 17, 10, and 8 mb at 2.24, 4.40, and 6.15 Bev, respectively. The experimental angular distributions are consistent with the prediction of a simple optical model with a complex index of refraction at short range.

1 data table match query

'ALL'.


Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

Albers, D. ; Bisplinghoff, J. ; Bollmann, R. ; et al.
Phys.Rev.Lett. 78 (1997) 1652-1655, 1997.
Inspire Record 454620 DOI 10.17182/hepdata.19581

Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300MeV/c (500 to 2500 MeV) in the angular range 35°≤Θc.m.≤90° with a detector providing ΔΘc.m.≈1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.

16 data tables match query

No description provided.

No description provided.

No description provided.

More…

Single-Pion Production in pp Collisions at 0.95-GeV/c (I)

The COSY-TOF collaboration El-Samad, S.Abd ; Bilger, R. ; Brinkmann, K. -Th. ; et al.
Eur.Phys.J.A 30 (2006) 443-453, 2006.
Inspire Record 725793 DOI 10.17182/hepdata.43429

The single-pion production reactions $pp\to d\pi^+$, $pp\to np\pi^+$ and $pp\to pp\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus all pion production channels were recorded with 1-4 overconstraints. The total and differential cross sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the $pp\pi^0$ channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular we observe very large anisotropies for the $\pi^0$ angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with $\pi^0$ $s$- and $d$-partial waves and emphasizing the important role of $\pi^0$ d-waves.

1 data table match query

Measured angular distribution for elastic P P scattering in the CM system normalised to the data in the SAID database (Arndt et al. PR C62,034005(2000). This measurement is made to determine the luminosity.


The Differential Cross-section for Proton Proton Elastic Scattering at 90-degrees $c$.m. Between 300-{MeV} and 500-{MeV}

Ottewell, D. ; Walden, P. ; Auld, E.G. ; et al.
Nucl.Phys.A 412 (1984) 189-194, 1984.
Inspire Record 191877 DOI 10.17182/hepdata.37041

The absolute differential cross section for proton-proton elastic scattering has been measured at 90° c.m. for 300, 350, 400, 450 and 500 MeV. The statistical uncertainty of the measurements is 0.5% with an additional systematic normalization uncertainty of 1.8%. The results are compared to phase-shift analyses.

1 data table match query

The statistical and systematic errors are added in quadrature.