Small Angle p p Elastic Scattering at Energies Between 285-MeV and 572-MeV

Aebischer, D. ; Favier, B. ; Greeniaus, L.G. ; et al.
Phys.Rev.D 13 (1976) 2478-2498, 1976.
Inspire Record 114031 DOI 10.17182/hepdata.24779

Differential cross sections for elastic p−p scattering have been measured at 285, 348, 398, 414, 455, 497, 530, and 572 MeV kinetic energy. The experiment was performed at the CERN synchrocyclotron, using multiwire proportional chambers placed directly in a proton beam. Scattering was observed for 1.5°≲θ≲10° in the laboratory system. The ratio αp of the real and imaginary parts of the non-spin-flip nuclear forward amplitude was derived from the interference between the Coulomb and nuclear amplitudes. The values obtained are model-dependent, but in this energy range αp is positive and decreases with energy. Qualitatively good agreement with dispersion-relation predictions is observed.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

A Measurement of the Energy Dependence of Elastic $\pi p$ and $p p$ Scattering at Large Angles

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 425, 1978.
Inspire Record 6233 DOI 10.17182/hepdata.3359

We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.

56 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Wide Angle Elastic Scattering of Pions and Protons Off Protons

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.D 21 (1980) 2445, 1980.
Inspire Record 8517 DOI 10.17182/hepdata.24189

A comprehensive measurement of the differential cross section for π±p and pp elastic scattering has been made at large center-of-mass angles. π−p and pp scattering were measured with incident laboratory momenta ranging from 2 to 9.5 GeV/c. π+p scattering was measured with momenta from 2 to 6.3 GeV/c. Scattering angles were in the range −0.3≲cosθc.m.≲0.4. The results of the experiment are compared to constituent models and statistical models.

1 data table match query

No description provided.


Elastic Scattering of Hadrons at 50-GeV to 200-GeV

Akerlof, C.W. ; Kotthaus, R. ; Loveless, R.L. ; et al.
Phys.Rev.Lett. 35 (1975) 1406, 1975.
Inspire Record 2687 DOI 10.17182/hepdata.21194

The differential cross section for π±, K±, and p± on hydrogen have been measured in the range 0.07<−t<1.6 (GeV/c)2. The dependence on momentum, momentum, transfer, and particle type are discussed.

1 data table match query

No description provided.


Large Momentum Transfer Elastic Scattering of $\pi^{\pm}, K^{\pm}$, and $\rho^{\pm}$ on Protons at 100 GeV/c and 200 GeV/c

Rubinstein, R. ; Baker, W.F. ; Eartly, David P. ; et al.
Phys.Rev.D 30 (1984) 1413, 1984.
Inspire Record 202682 DOI 10.17182/hepdata.23648

Results are presented on π±p, K±p, and p±p elastic scattering measured with an apparatus having acceptance of 0.5<−t<2.5 (GeV/c)2 and 0.9<−t<11 (GeV/c)2 at 100 and 200 GeV/c, respectively. A diffractionlike dip is seen for the first time in the π−p t distribution at −t=4 (GeV/c)2. All meson-proton cross sections are found to be similar in the range 1<−t<2.5 (GeV/c)2, although some small systematic differences are observed. Cross sections for pp and p―p are compared with previous data.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Comparison of particle-antiparticle elastic scattering from 3 to 6 gev/c

Ambats, I. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.Lett. 29 (1972) 1415-1419, 1972.
Inspire Record 84577 DOI 10.17182/hepdata.21445

Differential cross sections for π±p, K±p, pp, and p¯p elastic scattering were measured at 3, 3.65, 5, and 6 GeVc for momentum transfers from 0.03 to 1.5 GeV2 using the Argonne effective mass spectrometer. Particular attention was paid to the relative particle-antiparticle normalization. The crossover points are consistent with no energy dependence, average values being 0.14 ± 0.03, 1.190 ± 0.005, and 0.160 ± 0.007 GeV2 for π's, K's, and protons, respectively.

1 data table match query

No description provided.


Elastic Scattering of Charged Mesons, Anti-protons and Protons on Protons at Incident Momenta of 20-{GeV}/$c$, 30-{GeV}/$c$ and 50-{GeV}/$c$ in the Momentum Transfer Range $0.5-{\rm GeV}/c^2 < -t < 8-{\rm GeV}/c^2$

The Annecy(LAPP)-CERN-Bohr Inst-Genoa-Oslo-London collaboration Asad, Z. ; Baglin, C. ; Bock, R. ; et al.
Nucl.Phys.B 255 (1985) 273-327, 1985.
Inspire Record 206292 DOI 10.17182/hepdata.33789

Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of π ± p, K ± p, p p and pp at incident momen ta of 20, 30 and 50 GeV/ c . The measurements cover the momentum transfer range 0.5 < | t | < 8 (GeV/ c ) 2 , corresponding to c.m. scattering angles between 10° and 50°. The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-| t | region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for p p two-body annihilation into π − π + and K − K + at 30 and 50 GeV/ c , obtained in parallel with the elastic p p data, are also presented.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Large-Angle Pion-Proton Elastic Scattering at High Energies

Orear, J. ; Rubinstein, R. ; Scarl, D.B. ; et al.
Phys.Rev. 152 (1966) 1162-1170, 1966.
Inspire Record 50774 DOI 10.17182/hepdata.407

Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.

22 data tables match query

'1'. '2'.

'1'. '2'.

No description provided.

More…

Proton-Proton Elastic Scattering Involving Large Momentum Transfers

Cocconi, G. ; Cocconi, V.T. ; Krisch, A.D. ; et al.
Phys.Rev. 138 (1965) B165-B172, 1965.
Inspire Record 49634 DOI 10.17182/hepdata.26688

Twenty-nine proton-proton differential elastic cross sections for lab momenta p0 from 11 to 31.8 BeV/c, at four-momentum transfers squared, −t, from 2.3 to 24.4 (BeV/c)2, have been measured at the Brookhaven alternating gradient synchrotron. The circulating proton beam impinged upon a thin CH2 internal target. Both scattered protons from p−p elastic events were detected by scintillation-counter telescopes which were placed downstream from deflection magnets set at the appropriate angles to the incident beam. The angular correlation of the protons, their momenta, and the coplanarity of the events were determined by the detection system. The results show that at high momentum transfers the differential cross section, dσdt, depends strongly upon the energy; for −t=10 (BeV/c)2, the value of dσdt at p0=30 BeV/c is smaller by a factor∼1000 than at p0=10 BeV/c. At all energies, dσdt falls rapidly with increasing |t| for scattering angles up to about 65° (c.m.), while in the range from 65 to 90° the cross section falls only by a factor of about 2. The smallest cross section measured was 9×10−37 cm2 sr−1 (c.m.), at p0=31.8 BeV/c and −t=20.4 (BeV/c)2; this is about 3×10−12 of the zero-degree cross section at the same energy.

1 data table match query

'1'. '2'.


Low-energy proton proton scattering near the interference minimum using a windowless gas jet target

Dombrowski, H. ; Khoukaz, A. ; Santo, R. ;
Nucl.Phys.A 619 (1997) 97-118, 1997.
Inspire Record 459312 DOI 10.17182/hepdata.36348

In the energy region around 380 keV (lab.) and at detection angles near 45° (lab.) the cross section of proton-proton scattering exhibits a deep minimum, since the Coulomb amplitude and the nuclear amplitude almost cancel each other out, resulting in a pronounced deviation from pure Mott scattering. A new set of precise data in the-energy range between 300 and 407 keV was recorded using the accelerator of the IKP Münster by employing a thin gas jet target with an areal density smaller than 8 × 10 14 cm −2 . For the first time p-p scattering near the interference minimum was studied under single scattering conditions using a high quality ion beam (energy spread <40 eV). Since the energy smearing was two orders of magnitude lower than that of the former measurements, a more detailed evaluation of the data was feasible, resulting in differential cross sections near the minimum which are smaller than published before. The measured values cannot be explained by the interference of the Coulomb and the nuclear amplitude alone but suggest the need for vacuum polarization or other additional effects. The position of the minimum was determined to be (382.8 ± 0.1) keV.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////Random and systematic erros include: adjustment of the ion beam and of the detector system, accelerator energy, counting statistics, correction of the background of the measured peaks, pile-up peaks of the 5.7 deg conters, statisticsof the Monte Carlo simulations, model uncertainty, diameter of the ion beam, po sition of the target, luminosity correction factor K* and the influence of the phase delta_0, fixed in advance, on the angular distribution of the cross section).