CUSP IN PI- P ELASTIC SCATTERING AT THE ETA THRESHOLD

Sarma, H.N.K. ; Binnie, D.M. ; Carr, J. ; et al.
Nucl.Phys.B 161 (1979) 1-13, 1979.
Inspire Record 147683 DOI 10.17182/hepdata.34612

We present results from a high momentum resolution measurement of the π − p elastic differential cross section near the η production threshold. By analysing the cusp discontinuity in the elastic cross section we deduce the non-spin-flip elastic amplitude and compare it with solutions from phase-shift analyses.

601 data tables match query

No description provided.

No description provided.

No description provided.

More…

Pi- p ELASTIC SCATTERING IN THE CMS ENERGY RANGE 1400-MeV TO 2000-MeV

Brody, A.D. ; Cashmore, R.J. ; Kernan, A. ; et al.
Phys.Rev.D 3 (1971) 2619, 1971.
Inspire Record 60976 DOI 10.17182/hepdata.4110

Total and differential cross sections for π−p elastic scattering are presented at 35 energies between 1400 and 2000 MeV.

70 data tables match query

No description provided.

No description provided.

No description provided.

More…

Search for Narrow Baryons in $\pi^- p$ Elastic Scattering at Large Angles

The CERN-College de France-Ecole Poly collaboration Baillon, P. ; Barrelet, E. ; Benayoun, Maurice ; et al.
Phys.Lett.B 94 (1980) 533-540, 1980.
Inspire Record 153784 DOI 10.17182/hepdata.27177

Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.

1 data table match query

ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).


The Real Part of the Forward Scattering Amplitude in pi+- p Elastic Scattering Below 2-GeV/c

Baillon, P. ; Bricman, C. ; Eberhard, P. ; et al.
Phys.Lett.B 50 (1974) 387-390, 1974.
Inspire Record 89683 DOI 10.17182/hepdata.27947

The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.

7 data tables match query
More…

pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables match query

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

$\pi$-proton scattering at 516, 616, 710, 887, and 1085 MeV

Gbaed, F. ; Montanet, L. ; Lehmann, P. ; et al.
Nuovo Cim. 22 (1961) 193-198, 1961.
Inspire Record 1187691 DOI 10.17182/hepdata.37734

We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic scattering $\pi^{-} + p$ at 915 MeV

Bergia, S. ; Bertocchi, L. ; Borelli, V. ; et al.
Nuovo Cim. 15 (1960) 551-564, 1960.
Inspire Record 1184997 DOI 10.17182/hepdata.37779

The differential cross-section for elastic scattering π−+p has been determined on the basis of 1 421 events observed in a propane bubble chamber. The angular distribution presents a backward bump (θ>90°) of (31.5±1.3)%. The amplitude at 0° obtained extrapolating the angular distribution by means of a least squares fit is compared with the value obtained from the dispersion relations and the optical theorem. New values of the pion proton cross-sections were taken into account for the dispersion relation integrals. Using the same best fit of the angular distribution a value for the interaction radius is obtained from considerations based on the diffraction scattering part.

1 data table match query

No description provided.


Fluctuations in Large Angle $\pi^\pm p$ Elastic Scattering

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 429, 1978.
Inspire Record 6210 DOI 10.17182/hepdata.76245

Large-angle π±p elastic-scattering cross sections, measured between 2 and 9 GeV/c in fine intervals of incident momentum and scattering angle, are used to search for cross-section fluctuations occurring for small changes in the center-of-mass energy as suggested by Ericson and Mayer-Kuckuck and by Frautschi. Significant fluctuations are observed.

144 data tables match query

No description provided.

No description provided.

No description provided.

More…

$\pi^{-}+ p$ elastic scattering at 1 200 MeV

Bertanza, L. ; Carrara, R. ; Drago, A. ; et al.
Nuovo Cim. 19 (1961) 467-481, 1961.
Inspire Record 1184999 DOI 10.17182/hepdata.1109

A bubble chamber investigation of π−+p elastic scattering at 1 200 MeV (K.E.) is reported. The total and differential cross-sections are determined. By extrapolation of the angular distribution, the 0° cross-section is derived and compared with the results obtained with the help of the dispersion relations and the optical theorem. The forward peak is investigated in terms of diffraction scattering and a value for the optical radius is derived.

3 data tables match query

No description provided.

No description provided.

No description provided.


$\{pi}-p$ interactions at 1.59 GeV/c

Alitti, J. ; Baton, J.P. ; Berthelot, A. ; et al.
Nuovo Cim. 29 (1963) 515, 1963.
Inspire Record 851185 DOI 10.17182/hepdata.980

Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.

3 data tables match query

No description provided.

No description provided.

No description provided.