Elastic pi- p, k- p and anti-p p scattering at momenta of 25 and 40 gev/c

Antipov, Yu.M. ; Ascoli, G. ; Busnello, R. ; et al.
Yad.Fiz. 18 (1973) 353-363, 1973.
Inspire Record 84824 DOI 10.17182/hepdata.19259

None

1 data table match query

No description provided.


Elastic scattering of pi- p, K- p and anti-p p at 25-GeV/c and 40-GeV/c

Antipov, Yu.M. ; Ascoli, G. ; Busnello, R. ; et al.
Nucl.Phys.B 57 (1973) 333-347, 1973.
Inspire Record 80976 DOI 10.17182/hepdata.32554

Elastic diffraction scattering of π − , K − and p on protons has been measured at 25 and 40 GeV/c at the Serpukhov Proton Accelerator. Differential elastic cross sections and diffraction slopes are presented in the momentum-transfer interval 0.07–0.80 (GeV/ c ) 2 and compared with existing data at lower energies.

3 data tables match query

No description provided.

No description provided.

No description provided.


$K^- p$ elastic scattering at 10 GeV/c

The Aachen-Berlin-CERN-London (I.C.)-Vienna collaboration Aderholz, M. ; Bartsch, J. ; Keppel, E. ; et al.
Phys.Lett.B 24 (1967) 434-437, 1967.
Inspire Record 1392680 DOI 10.17182/hepdata.29583

K − p elastic scattering at 10 GeV/ c is studied on ∼3600 bubble chamber events. The elastic cross section is found to be σ el = (3.20 ± 0.14)mb and the ratio σ el σ tot = (0.142 ± 0.006) , that is below the upper limit of 0.185 suggested in a model by Van Hove. The value of the forward differential cross section is consistent with zero real part to the scattering amplitude. The slope of d σ d t is similar to that for π ± and greater than that of K + , with no evidence for shrinkage of the diffraction peak. No events of backward scattering were observed. The Regge-pole model of Phillips and Rarita gives a good fit to the data.

1 data table match query

No description provided.


K- p Elastic Scattering at 14.3-GeV/c

Drevillon, B. ; Borenstein, S. ; Chaurand, B. ; et al.
Nucl.Phys.B 97 (1975) 392-402, 1975.
Inspire Record 2869 DOI 10.17182/hepdata.31858

Results are presented of a bubble chamber experiment on K − p elastic scattering at 14.3 GeV/ c , in four-momentum transfer range 0.04 < | t | < 2.74 GeV 2 using an initial set of 40 000 events. The total elastic cross section is (2.96 ± 0.10) mb. The results are compared with K + p elastic scattering data at 13.8 GeV/ c , and the effective Regge trajectory is calculated using K − p data from 5 to 100 GeV/ c .

2 data tables match query

FOR -T < 0.04 GEV**2, CROSS SECTION WAS EXTRAPOLATED TO THE OPTICAL POINT WITH -0.055+-0.040 FOR THE REAL/IMAGINARY RATIO OF THE FORWARD AMPLITUDE.

No description provided.


K- p elastic scattering at 10-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Bartsch, J. ; Deutschmann, M. ; Kraus, G. ; et al.
Nucl.Phys.B 29 (1971) 398-404, 1971.
Inspire Record 68635 DOI 10.17182/hepdata.33567

Results are presented on elastic scattering of 10.1 GeV/ c K − mesons on protons, based on a sample of 16 261 kinematically-fitted bubble-chamber events. The differential cross section is given over the | t |- range of 0.06 to 2.5 GeV 2 and is fitted with the expressions a e bt , A e Bt + Ct 2 and ( P e Qt + Re St ) over various intervals of t . The results are compared with those of other experiments at nearby energies. Upper limits of | α | < 0.28 and σ B < 0.4 μ b (both at a 90% confidence level) are given for the ratio of real to imaginary part of the forward-scattering amplitude and the backward-elastic-scattering cross section, respectively.

3 data tables match query

No description provided.

ERROR INCLUDES STATISTICAL ERROR AND ERROR IN TOTAL CROSS SECTION USED FOR NORMALIZATION. EXTRAPOLATION OF D(SIG)/DT TO T=0 PROVIDES ABOUT 0.5 PCT UNCERTAINTY.

NO BACKWARD EVENTS OBSERVED. LARGEST ANGLE EVENT SEEN WAS AT 64 DEG (-T = 2.33 GEV**2).


A High Statistics Study of pi+ p, pi- p, and p p Elastic Scattering at 200-GeV/c

Schiz, A. ; Fajardo, L.A. ; Majka, R. ; et al.
Phys.Rev.D 24 (1981) 26, 1981.
Inspire Record 143937 DOI 10.17182/hepdata.24037

We have measured π+p, π−p, and pp elastic scattering at an incident-beam momentum of 200 GeV/c in the region of −t, four-momentum transfer squared, from 0.021 to 0.665 (GeV/c)2. The data allow an investigation of the t dependence of the logarithmic forward slope parameter b≡(ddt)(lndσdt). In addition to standard parametrization, we use functional forms suggested by the additive quark model to fit the measured dσdt distributions. Within the context of this model we estimate the size of the clothed quark in the pion and proton. Limits on the elastic-scattering amplitude derived from unitarity bounds are checked, and no violations are observed.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Systematic study of pi+- p, k+- p, p p, and anti-p p forward elastic scattering from 3 to 6 gev/c

Ambats, I. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.D 9 (1974) 1179-1209, 1974.
Inspire Record 92992 DOI 10.17182/hepdata.3409

Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.

17 data tables match query

No description provided.

No description provided.

No description provided.

More…

$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

26 data tables match query

No description provided.

No description provided.

No description provided.

More…

Hadron-Proton Elastic Scattering at 50-GeV/c, 100-GeV/c and 200-GeV/c Momentum

Akerlof, C.W. ; Kotthaus, R. ; Loveless, R.L. ; et al.
Phys.Rev.D 14 (1976) 2864, 1976.
Inspire Record 3655 DOI 10.17182/hepdata.24693

Elastic scattering of hadrons on protons has been measured at momenta of 50, 100, and 200 GeV/c. The meson-proton scattering is found to be independent of momentum and meson type for −t>0.8 (GeV/c)2. The momentum dependence of the pp dip at −t=1.4 (GeV/c)2 was investigated. Slope parameters are given.

17 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic scattering and single-pion production in k- p interactions at 5.5 gev/c

Engelmann, R. ; Musgrave, B. ; Schweingruber, F. ; et al.
Phys.Rev.D 5 (1972) 2162-2187, 1972.
Inspire Record 74221 DOI 10.17182/hepdata.22545

We present results of an analysis of two-prong events for elastic scattering and single-pion production in K−p interactions at 5.5 GeVc. The resonance parameters for the charged and neutral K*(890) and K*(1420) are determined and the observed production and decay properties of the charged and neutral K*(890) are compared with the theoretical predictions of an absorptive one-particle-exchange model and a Regge model. The K*(1420) differential cross section and density-matrix elements are presented and the question of whether more than one resonance exists in this mass range is considered. A search for resonance effects at Kπ mass beyond 1500 MeV is made. In particular, the recently reported state at 1800 MeV is discussed. A B5-model analysis of the reaction K−p→K¯0π−p is also presented.

2 data tables match query

NORMALIZED TO SIG(K- P --> ANYTHING) OF 24.3 +- 0.8 MB.

FORWARD CROSS SECTION OPTICAL POINT FROM TWO PARAMETER EXPONENTIAL FIT OVER 0.12 < -T < 0.68 GEV**2.