$K^- p$ elastic scattering at 10 GeV/c

The Aachen-Berlin-CERN-London (I.C.)-Vienna collaboration Aderholz, M. ; Bartsch, J. ; Keppel, E. ; et al.
Phys.Lett.B 24 (1967) 434-437, 1967.
Inspire Record 1392680 DOI 10.17182/hepdata.29583

K − p elastic scattering at 10 GeV/ c is studied on ∼3600 bubble chamber events. The elastic cross section is found to be σ el = (3.20 ± 0.14)mb and the ratio σ el σ tot = (0.142 ± 0.006) , that is below the upper limit of 0.185 suggested in a model by Van Hove. The value of the forward differential cross section is consistent with zero real part to the scattering amplitude. The slope of d σ d t is similar to that for π ± and greater than that of K + , with no evidence for shrinkage of the diffraction peak. No events of backward scattering were observed. The Regge-pole model of Phillips and Rarita gives a good fit to the data.

1 data table match query

No description provided.


$K^- + p$ elastic scattering at 3.46 GeV/c

Gordon, J. ;
Phys.Lett. 21 (1966) 117-120, 1966.
Inspire Record 1389617 DOI 10.17182/hepdata.29930

1691 events were fitted to K - p elastic scatters at a K - momentum of 3.46 GeV/ c . The differential cross section as a function of 4 momentum transfer was fitted to exp ( A + Bt + Ct 2 ) with A = 3.7 B = 8.7 ( GeV / c ) −2 and C = 2.0 ( GeV / c ) −4 . The distribution is consistent with zero real part for the forward scattering amplitude.

1 data table match query

D(SIG)/D(T) was fitted to EXP(CONST+SLOPE*T+SLOPE*T**2).