The p p elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Beddo, M. ; et al.
Nucl.Phys.A 637 (1998) 231-242, 1998.
Inspire Record 478006 DOI 10.17182/hepdata.36350

A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .

19 data tables match query

Analysing power measurements at a fixed laboratory angle of 13.9 degrees.

No description provided.

No description provided.

More…

Polarization in pi--p Scattering between 500 and 940 Mev

Beall, E.F. ; Cork, B. ; Murphy, P.G. ; et al.
Phys.Rev. 126 (1962) 1554-1560, 1962.
Inspire Record 944982 DOI 10.17182/hepdata.26812

A graphite-plate spark chamber has been used to analyze the polarization of protons recoiling from π−−p scattering. The observations were made at 90° (c.m. system) pion scattering angle for seven incident pion energies between 500 and 940 Mev, at 120° or 135° for five energies in this interval, and also at 75° for 500 Mev only. The results are compared with predictions of several models used to explain the maxima in the π−−p scattering cross section. Qualitative arguments show that the energy intervals between these maxima are not completely dominated by neighboring single-state resonances. Phase shifts found to be large in scattering also seem to be large in polarization.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the polarization parameter in pi- p elastic scattering at 40 gev/c

The Saclay-Serpukhov-Dubna-Moscow collaboration Bruneton, C. ; Bystricky, J. ; Cozzika, G. ; et al.
Phys.Lett.B 44 (1973) 471-473, 1973.
Inspire Record 84826 DOI 10.17182/hepdata.28096

We report our first measurements of the polarization in the elastic scattering of negative pions from polarized protons at an incident pion momentum of 40 GeV/ c . The momentum-transfer region covered was 0.08 < | t | < 1.3 (GeV/ c ) 2 . The angular distribution of the polarization exhibits a first minimum of ∼ − 5% and the well-known zero around t ≈ − 0.6 (GeV/ c ) 2 . The energy variation of the first minimum (at around t = − 0.2) may be expressed in a simple form, P avr = −(0.48±0.06) s −0.52±0.05 .

1 data table match query

No description provided.


Polarization Measurements around the Secondary Dip in pip Elastic Scattering

Auer, P. ; Giese, R. ; Hill, D. ; et al.
Phys.Rev.Lett. 37 (1976) 83-84, 1976.
Inspire Record 945158 DOI 10.17182/hepdata.21039

Polarization in π−p elastic scattering, with emphasis in the region around the secondary dip and also θc.m.=90°, has been measured at 2.93 and 3.25 GeV/c. We observe an interesting sign change in this angular region.

2 data tables match query

No description provided.

No description provided.


High precision measurement of A in large P(T)**2 spin polarized 24-GeV/c proton proton elastic scattering

Crabb, D.G. ; Kaufman, W.A. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 65 (1990) 3241-3244, 1990.
Inspire Record 299843 DOI 10.17182/hepdata.19939

We measured the analyzing power A out to P⊥2=7.1 (GeV/c)2 with high precision by scattering a 24-GeV/c unpolarized proton beam from the new University of Michigan polarized proton target; the target’s 1-W cooling power allowed a beam intensity of more than 2×1011 protons per pulse. This high beam intensity together with the unexpectedly high average target polarization of about 85% allowed unusually accurate measurements of A at large P⊥2. These precise data confirmed that the one-spin parameter A is nonzero and indeed quite large at high P⊥2; most theoretical models predict that A should go to zero.

1 data table match query

Errors quoted contain both statistical and systematic uncertainties.


Measurement of the polarization parameter in backward pi+ p elastic scattering at 1.60, 1.80, 2.11, and 2.31 gev/c

Burleson, G. ; Hill, D. ; Kato, S. ; et al.
Phys.Rev.Lett. 26 (1971) 338-340, 1971.
Inspire Record 69051 DOI 10.17182/hepdata.21558

Measurements of polarization in π+p elastic scattering have been made at 1.60, 1.80, 2.11, and 2.31 GeVc. The data cover the entire angular range, with emphasis on the backward region. Comparisons have been made with both u-channel and t-channel models, as well as with predictions of phase-shift analyses. While the agreement is generally poor in all cases, the best agreement is with some t-channel predictions.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of polarization in pi- p elastic scattering at large angles

Hill, D. ; Koehler, P.F.M. ; Novey, T.B. ; et al.
Phys.Rev.Lett. 27 (1971) 1241-1243, 1971.
Inspire Record 68894 DOI 10.17182/hepdata.229

We have made measurements of polarization in π−p elastic scattering, with emphasis over the backward region, at 1.60 to 2.28 GeVc. The results indicate the absence of u-channel dominance in the backward region, as was observed in the case of π+p scattering. Comparisons have been made with predictions of various phase-shift analyses which show that the agreement is generally very poor in the backward region.

9 data tables match query

No description provided.

No description provided.

No description provided.

More…

ANALYZING POWER IN LARGE ANGLE PROTON NEUTRON ELASTIC SCATTERING

Makdisi, Y. ; Marshak, M.L. ; Mossberg, B. ; et al.
Phys.Rev.Lett. 45 (1980) 1529-1533, 1980.
Inspire Record 159455 DOI 10.17182/hepdata.20701

The large-angle analyzing power A in proton-neutron elastic scattering at 2, 3, and 6 GeV/c with use of the polarized proton beam at the Argonne zero-gradient synchrotron and a liquid deuterium target have been measured. The measurements, the first at high energy, show that A is large (20-40%) and negative over much of the angular range and shows no decrease with incident energy, unlike the earlier data at smaller angles.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of the Polarization in Large Angle $\pi^- P$ Elastic Scattering at 2.93-{GeV}/c and 3.25-{GeV}/c

Auer, I.P. ; Bridges, D. ; Droege, T. ; et al.
Phys.Rev.D 24 (1981) 1771-1784, 1981.
Inspire Record 172691 DOI 10.17182/hepdata.24055

We have measured the polarization for elastic scattering in the reaction π−p→π−p at 2.93 and 3.25 GeV/c using a polarized proton target and multiwire proportional chambers (MWPC's) with emphasis on large-angle scattering. Events were selected by fast scintillation-counter logic. Beam trajectories were measured with four MWPC's and the scattered-particle angles were measured with one or two MWPC's; elastic events were determined by coplanarity and angle-angle correlations. The polarization is in agreement with previous measurements below |t|=2.0 (GeV/c)2, and crosses from negative to positive near the secondary dip in the differential cross section dσdt. In the backward region, an energy dependence appears with the polarization being large and negative at 2.93 GeV/c and consistent with zero at 3.25 GeV/c.

2 data tables match query

No description provided.

No description provided.


Angular dependence of the pp elastic-scattering analyzing power between 0.8 and 2.8 GeV. II. Results for higher energies

Allgower, C.E. ; Ball, J. ; Beddo, M.E. ; et al.
Phys.Rev.C 60 (1999) 054002, 1999.
Inspire Record 508562 DOI 10.17182/hepdata.25565

Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic-scattering single spin parameter Aooon=Aoono=AN=P. The c.m. angular range is typically 60–100°. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed, but no rapid changes are observed.

20 data tables match query

Measured values of the P P analysing power at kinetic energy 0.795 GeV. Therelative and additive systematic errors are +- 0.018 and 0.0007.

Measured values of the P P analysing power at kinetic energy 1.975 GeV. Therelative and additive systematic errors are +- 0.045 and 0.002.

Measured values of the P P analysing power at kinetic energy 2.035 GeV fromrun I. The relative and additive systematic errors are +- 0.044 and 0.002.

More…