pi+ proton, pi- proton and pp elastic scattering at 8.5, 12.4 and 18.4 GeV/c

Harting, D. ; Blackall, P. ; Elsner, B. ; et al.
Nuovo Cim. 38 (1965) 60, 1965.
Inspire Record 49759 DOI 10.17182/hepdata.1110

Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.

18 data tables match query

'1'. '2'. '3'. '4'.

More…

A Measurement of $\bar{p} p$ and $p p$ Elastic Scattering in the Dip Region at $\sqrt{s}=53$-{GeV}

Breakstone, A. ; Crawley, H.B. ; Dallavalle, G.M. ; et al.
Phys.Rev.Lett. 54 (1985) 2180, 1985.
Inspire Record 212895 DOI 10.17182/hepdata.20368

We have measured the differential cross section for p¯p and pp elastic scattering at s=53 GeV in the interval 0.5<|t|<4.0 (GeV/c)2 at the CERN intersecting storage rings using the split-field magnet detector. The shape of the differential cross section differs significantly between p¯p and pp scattering in the region 1.1<|t|<1.5 (GeV/c)2, with p¯p data showing a less pronounced dip structure than pp data.

1 data table match query

No description provided.


A Measurement of $\bar{p} p$ and $p p$ Elastic Scattering at {ISR} Energies

The AMES-BOLOGNA-CERN-DORTMUND-HEIDELBERG-WARSAW collaboration Breakstone, A. ; Campanini, R. ; Crawley, H.B. ; et al.
Nucl.Phys.B 248 (1984) 253-260, 1984.
Inspire Record 204422 DOI 10.17182/hepdata.33837

We have measured the differential cross section for pp and p̄p elastic scattering at √ s = 31, 53 and 62 GeV in the interval 0.05 < | t | < 0.85 GeV 2 at the CERN ISR using the Split Field Magnet detector. At 53 and 62 GeV, for 0.17 < | t | < 0.85 GeV 2 both pp and p̄p data show simple exponential behaviour in t ; at √ s = 31 GeV the data for 0.05 < | t | < 0.85 GeV 2 are consistent with a change in slope near | t | = 0.15 GeV 2 .

5 data tables match query

ERRORS CONTAIN BOTH STATISTICAL AND T-DEPENDENT SYSYEMATIC ERRORS.

No description provided.

LOCAL SLOPE PARAMETERS BASED ON QUADRATIC EXPONENTIAL FIT.

More…

A Comparison of the Shapes of pi+ p and p p Diffraction Peaks from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, Robert E. ; Maclay, G.J. ; et al.
Phys.Rev.Lett. 37 (1976) 548, 1976.
Inspire Record 108238 DOI 10.17182/hepdata.21073

The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.

1 data table match query

ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.


The Real Part of the Forward Elastic Nuclear Amplitude for p p, anti-p p, pi+ p, pi- p, K+ p, and K- p Scattering Between 70-GeV/c and 200-GeV/c

Fajardo, L.A. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.D 24 (1981) 46, 1981.
Inspire Record 152596 DOI 10.17182/hepdata.24028

We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.

1 data table match query

No description provided.


Polarization Measurements in pi+ p, K+ p and p p Elastic Scattering at 45-GeV/c and Comparison with Regge Phenomenology

The SACLAY-SERPUKHOV-DUBNA-MOSCOW collaboration Gaidot, A. ; Bruneton, C. ; Bystricky, J. ; et al.
Phys.Lett.B 61 (1976) 103-106, 1976.
Inspire Record 113043 DOI 10.17182/hepdata.27714

The polarization parameter P has been measured for elastic π + p, K + p and pp scattering at 45 GeV/c. Four-momentum transfer ranges from −0.08 to −1.1 (GeV/) 2 for pp, and from −0.08 to −0.9 (GeV/) 2 for π + p and K + p. The energy dependence of the polarization P ( t ) in π + p and in K + p above 6 GeV/c incident momentum is compatible with interference between pomeron and Regge poles. On the other hand, the polarization in p p elastic scattering decreases faster than ordinary Regge model predictions. This result can be explained by interference between non flip and flip amplitudes of the pomeron, leading to negative values for the polarization.

2 data tables match query

No description provided.

No description provided.


Polarization in Elastic Scattering of pi+, K+ Mesons and Protons on Protons at 45-GeV/c

The Serpukhov-Saclay-Dubna-Moscow collaboration Bruneton, C. ; Bystricky, J. ; Gaidot, A. ; et al.
Sov.J.Nucl.Phys. 25 (1977) 198, 1977.
Inspire Record 108993 DOI 10.17182/hepdata.19052
1 data table match query

No description provided.


Measurements of the Spin Rotation Parameter R in p p and pi+ p Elastic Scattering at 45-GeV/c

The SERPUKHOV-SACLAY-DUBNA-MOSCOW collaboration Pierrard, J. ; Bruneton, C. ; Bystricky, J. ; et al.
Phys.Lett.B 61 (1976) 107-109, 1976.
Inspire Record 113035 DOI 10.17182/hepdata.27706

The spin rotation sf R in pp and π + p elastic scattering at 45 GeV/c has been measured at the Seppukhov accelarator, for z . sfnc ; t |; ranging from 0.2 to 0.5 (GeV/) 2 . The results are presented, together with previous R measurements at lower energies. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues in the pomeron exchange.

2 data tables match query

No description provided.

No description provided.


On Measuring the Spin Rotation Parameter in Elastic p p and pi+ p Scattering at 45-GeV/c

Bruneton, C. ; Bystricky, J. ; Gaidot, A. ; et al.
Yad.Fiz. 24 (1976) 762-765, 1976.
Inspire Record 108609 DOI 10.17182/hepdata.19050

None

1 data table match query

No description provided.


Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

1 data table match query

Errors include statistical and systematic uncertainties.