Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

22 data tables match query

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

Albers, D. ; Bisplinghoff, J. ; Bollmann, R. ; et al.
Phys.Rev.Lett. 78 (1997) 1652-1655, 1997.
Inspire Record 454620 DOI 10.17182/hepdata.19581

Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300MeV/c (500 to 2500 MeV) in the angular range 35°≤Θc.m.≤90° with a detector providing ΔΘc.m.≈1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.

16 data tables match query

No description provided.

No description provided.

No description provided.

More…

Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

1 data table match query

Errors include statistical and systematic uncertainties.


Energy dependent measurements of the p p elastic analyzing power and narrow dibaryon resonances

Kobayashi, Y. ; Kobayashi, K. ; Nakagawa, T. ; et al.
Nucl.Phys.A 569 (1994) 791-820, 1994.
Inspire Record 320015 DOI 10.17182/hepdata.38528

The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.

1 data table match query

Statistical errors only.


High precision measurement of A in large P(T)**2 spin polarized 24-GeV/c proton proton elastic scattering

Crabb, D.G. ; Kaufman, W.A. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 65 (1990) 3241-3244, 1990.
Inspire Record 299843 DOI 10.17182/hepdata.19939

We measured the analyzing power A out to P⊥2=7.1 (GeV/c)2 with high precision by scattering a 24-GeV/c unpolarized proton beam from the new University of Michigan polarized proton target; the target’s 1-W cooling power allowed a beam intensity of more than 2×1011 protons per pulse. This high beam intensity together with the unexpectedly high average target polarization of about 85% allowed unusually accurate measurements of A at large P⊥2. These precise data confirmed that the one-spin parameter A is nonzero and indeed quite large at high P⊥2; most theoretical models predict that A should go to zero.

1 data table match query

Errors quoted contain both statistical and systematic uncertainties.


The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

3 data tables match query

No description provided.

2.2 GeV point taken from Brown et al., PR D31(85) 3017.

No description provided.


Measurement of Spin Effects in $p$ (Polarized) $p$ (Polarized) $\to p p$ at 18.5-{GeV}/$c$

Crabb, D.G. ; Gialas, I. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 60 (1988) 2351, 1988.
Inspire Record 261135 DOI 10.17182/hepdata.20096

We measured the analyzing power A and the spin-spin correlation parameter Ann in medium-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the 18.5-GeV/c Brookhaven Alternating-Gradient Synchrotron polarized-proton beam. We found sharp dips in both A and Ann, which occur at different P⊥2 values. The unexpected sharp structure in the spin-spin force occurs near P⊥2=2.3 (GeV/c)2 where the elastic cross section has no apparent structure.

1 data table match query

Errors contain both statistics and systematics.


Determination of Proton Nucleon Analyzing Powers and Spin Rotation Depolarization Parameters at 500-{MeV}

Marshall, J.A. ; Barlett, M.L. ; Fergerson, R.W. ; et al.
Phys.Rev.C 34 (1986) 1433-1438, 1986.
Inspire Record 240068 DOI 10.17182/hepdata.26283

500 MeV p→+p elastic and quasielastic, and p→+n quasielastic, analyzing powers (Ay) and spin-rotation-depolarization parameters (DSS, DSL, DLS, DLL, DNN) were determined for center-of-momentum angular ranges 6.8°–55.4° (elastic) and 22.4°–55.4° (quasielastic); liquid hydrogen and deuterium targets were used. The p→+p elastic and quasielastic results are in good agreement; both the p→+p and p→+n parameters are well described by current phase shift solutions.

4 data tables match query

The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.

The spin depolarization and spin rotation parameters in 500 MeV P P elastic interactions. Additional normalization uncertainty of 1 PCT (2 PCT for DLL and DLS).

The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.

More…

Measurements of Double and Triple Spin Parameters in $P P$ Elastic Scattering Between 440-{GeV} and 560-{MeV}

Aprile, E. ; Hausammann, R. ; Heer, E. ; et al.
Phys.Rev.D 34 (1986) 2566-2580, 1986.
Inspire Record 238398 DOI 10.17182/hepdata.23458

The polarization parameter Pn000, the two-spin parameters Dn0n0, Kn00n, Ds0s0, Ds0k0, and the three-spin parameters Ms0sn and Ms0kn have been measured for pp elastic scattering between 34° and 118° center-of-mass scattering angle at six different incident kinetic energies 447, 473, 497, 517, 539, and 560 MeV. The experiment was performed at SIN using a polarized proton beam, a polarized butanol target, and a polarimeter for the measurement of the polarization of the scattered proton.

12 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the Spin Parameters a and A(nn) in $p p$ Elastic Scattering in the 1-{GeV}/$c$ to 3-{GeV}/$c$ Region

Bell, D.A. ; Buchanan, J.A. ; Calkin, M.M. ; et al.
Phys.Lett.B 94 (1980) 310-314, 1980.
Inspire Record 153380 DOI 10.17182/hepdata.27194

We have measured the asymmetry parameter A and the spin correlation parameter A nn in pp elastic scattering, using the Argonne ZGS polarized proton beam and a polarized proton target. Angular distributions of A and A nn for | t | ≳ 0.2 (GeV/ c ) 2 were obtained at eight momenta between 1.10 and 2 if 2.75 GeV/ c . We find significant structure in both the energy and t -dependence of A nn at these energies. At p lab ≈ 1.34 GeV/ c A nn reaches a very large value of about 0.8–0.9 near θ cm = 90°.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…