Energy Dependence of Spin Spin Effects in p p Elastic Scattering at 90-Degrees Center-Of-Mass

Crosbie, E.A. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.D 23 (1981) 600, 1981.
Inspire Record 152851 DOI 10.17182/hepdata.24077

The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.

13 data tables match query
More…

Measurement of the polarization parameter in backward pi+ p elastic scattering at 1.60, 1.80, 2.11, and 2.31 gev/c

Burleson, G. ; Hill, D. ; Kato, S. ; et al.
Phys.Rev.Lett. 26 (1971) 338-340, 1971.
Inspire Record 69051 DOI 10.17182/hepdata.21558

Measurements of polarization in π+p elastic scattering have been made at 1.60, 1.80, 2.11, and 2.31 GeVc. The data cover the entire angular range, with emphasis on the backward region. Comparisons have been made with both u-channel and t-channel models, as well as with predictions of phase-shift analyses. While the agreement is generally poor in all cases, the best agreement is with some t-channel predictions.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the polarization parameter in k+ p elastic scattering

Barnett, B.A. ; Laasanen, A.T. ; Koehler, P.F.M. ; et al.
Phys.Rev.D 8 (1973) 2751-2764, 1973.
Inspire Record 93326 DOI 10.17182/hepdata.22081

Full angular distributions of the polarization parameter in elastic K+p scattering at 1.37, 1.45, 1.60, 1.71, 1.80, 1.89, 2.11, and 2.31 GeV/c are presented. These data were obtained in an experiment at the Zero Gradient Synchrotron using a polarized proton target with arrays of scintillation and Čerenkov counters to detect the scattered particles.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the polarization parameter in k+ p elastic scattering at 1.60, 1.80, 2.11 and 2.31 gev/c

Barnett, B.A. ; Laasanen, A.T. ; Steinberg, P.H. ; et al.
Phys.Lett.B 34 (1971) 655-658, 1971.
Inspire Record 69281 DOI 10.17182/hepdata.28513

The polarization parameter for K + p elastic scattering has been measured at 1.60, 1.80, 2.11 and 3.31 GeV/ c incident momenta over the entire angular range with an emphasis on the backward region. The results in the extreme backward region appear to be small and consistent with zero.

1 data table match query

No description provided.


Measurements of Spin Parameters in $p p$ Elastic Scattering at 6-{GeV}/$c$

Linn, S.L. ; Perlmutter, A. ; Crosbie, E.A. ; et al.
Phys.Rev.D 26 (1982) 550, 1982.
Inspire Record 11848 DOI 10.17182/hepdata.23900

We measured the differential cross section for proton-proton elastic scattering at 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P⊥2=1.6 (GeV/c)2. The spin-spin correlation parameter Ann exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90°c.m.. This sharp peak may be caused by particle-identity effects.

1 data table match query

No description provided.


Spin Dependence of High p-Transverse**2 Elastic p p Scattering

Crabb, D.G. ; Fernow, Richard C. ; Hansen, P.H. ; et al.
Phys.Rev.Lett. 41 (1978) 1257, 1978.
Inspire Record 7117 DOI 10.17182/hepdata.20867

We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.

1 data table match query

THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).


Spin Effects in $p p$ Elastic Scattering at 28-{GeV}/$c$

Hansen, P.H. ; O'Fallon, J.R. ; Danby, G.T. ; et al.
Phys.Rev.Lett. 50 (1983) 802, 1983.
Inspire Record 182130 DOI 10.17182/hepdata.20535

The analyzing power, A, was measured in proton-proton elastic scattering with use of a polarized proton target and 28-GeV/c primary protons from the alternating-gradient synchrotron. Over the P⊥2 range of 0.5 to 2.8 (GeV/c)2, the data show interesting structure. There is a rather sharp dip at P⊥2=0.8 (GeV/c)2 corresponding to the break in the elastic differential cross section at the end of the diffraction peak.

1 data table match query

No description provided.


Spin Spin Forces in 6-{GeV}/$c$ Neutron - Proton Elastic Scattering

Crabb, D.G. ; Hansen, P.H. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 43 (1979) 983, 1979.
Inspire Record 141922 DOI 10.17182/hepdata.20753

Measurement was made of dσdt for n↑+p↑→n+p at P⊥2=0.8 and 1.0 (GeV/c)2 at 6 GeV/c. The 6-GeV/c 53%-polarized neutrons from the 12-GeV/c polarized deuteron beam at the Argonne zero-gradient synchroton were scattered from our 75%-polarized proton target. Both spins were oriented perpendicular to the scattering plane. We found large unexpected spin-spin effects in n−p elastic scattering which are quite different from the p−p spin-spin effects.

1 data table match query

No description provided.


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table match query

No description provided.


The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

3 data tables match query

No description provided.

2.2 GeV point taken from Brown et al., PR D31(85) 3017.

No description provided.