$K^+$ nucleon elastic scattering at 180° between 1.0 and 1.5 GeV/c incident momentum

Adams, U. ; Carter, R.S. ; Cook, V. ; et al.
Nucl.Phys.B 87 (1975) 41-51, 1975.
Inspire Record 1392682 DOI 10.17182/hepdata.32061

We have measured the cross section at 180° for K + p and K + n elastic scattering in the momentum range 1.0 to 1.5 GeV/ c . The K + n cross section was measured on deuterium and the K + p on hydrogen and deuterium. We were thus able to measure directly the difference between free nucleon (proton) scattering and bound nucleon (proton) scattering at large angles. This difference was found to be small and within our experimental accuracy the K + p(n) cross section should be equal to the K + p (free) cross section at 180°. We found no evidence for an s -channel resonance Z ∗ in either the K + p or K + n system. A comparison of our data and those of other groups with theoretical predictions is given.

1 data table match query

HYDROGEN AND DEUTERIUM TARGET DATA ARE IN GOOD AGREEMENT. THESE CROSS SECTIONS ARE A WEIGHTED AVERAGE.


$K^- + p$ elastic scattering at 3.46 GeV/c

Gordon, J. ;
Phys.Lett. 21 (1966) 117-120, 1966.
Inspire Record 1389617 DOI 10.17182/hepdata.29930

1691 events were fitted to K - p elastic scatters at a K - momentum of 3.46 GeV/ c . The differential cross section as a function of 4 momentum transfer was fitted to exp ( A + Bt + Ct 2 ) with A = 3.7 B = 8.7 ( GeV / c ) −2 and C = 2.0 ( GeV / c ) −4 . The distribution is consistent with zero real part for the forward scattering amplitude.

1 data table match query

D(SIG)/D(T) was fitted to EXP(CONST+SLOPE*T+SLOPE*T**2).


$K^- p$ elastic scattering at 2.24 GeV/c

Dickinson, M. ; Miyashita, S. ; Libby, L.Marshall ; et al.
Phys.Lett.B 24 (1967) 596-598, 1967.
Inspire Record 1389623 DOI 10.17182/hepdata.29569

The differential elastic scattering cross section for 2.24 GeV/ c K − p collisions has been measured in film from the Brookhaven 20″ bubble chamber. The total elastic cross section is found to be 6.2 ± 0.7 mb. The exponential dependence on square of the momentum t in (GeV/ c ) 2 is fitted by ( d σ d Ω elastic = (12.4 ± 1.0 mb/sr) exp (7.81 ± 0.25)t . A A fit to a black disc model requires a radius of 0.95 ± 0.05 fm.

1 data table match query

D(SIG)/D(T) was fitted to CONST*EXP(-SLOPE*T).


A Measurement of the Energy Dependence of Elastic $\pi p$ and $p p$ Scattering at Large Angles

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 425, 1978.
Inspire Record 6233 DOI 10.17182/hepdata.3359

We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.

56 data tables match query

No description provided.

No description provided.

No description provided.

More…

ANALYZING POWER IN LARGE ANGLE PROTON NEUTRON ELASTIC SCATTERING

Makdisi, Y. ; Marshak, M.L. ; Mossberg, B. ; et al.
Phys.Rev.Lett. 45 (1980) 1529-1533, 1980.
Inspire Record 159455 DOI 10.17182/hepdata.20701

The large-angle analyzing power A in proton-neutron elastic scattering at 2, 3, and 6 GeV/c with use of the polarized proton beam at the Argonne zero-gradient synchrotron and a liquid deuterium target have been measured. The measurements, the first at high energy, show that A is large (20-40%) and negative over much of the angular range and shows no decrease with incident energy, unlike the earlier data at smaller angles.

3 data tables match query

No description provided.

No description provided.

No description provided.


Absolute p p elastic cross-sections from 492-MeV to 793-MeV

Simon, A.J. ; Glass, G. ; McNaughton, M.W. ; et al.
Phys.Rev.C 48 (1993) 662-675, 1993.
Inspire Record 363783 DOI 10.17182/hepdata.26001

Absolute pp-elastic-differential cross sections were measured at incident energies 492, 576, 642, 728, and 793 MeV from about 30° to 90° c.m. The total uncertainty was determined to be less than 1%, made possible by particle counting for beam normalization and extensive cross-checks of systematic effects. These new data are consistent with previous data above 600 MeV but have uncertainties about a factor of 10 smaller. Near 500 MeV these data are consistent with 90° data from TRIUMF, but differ significantly from similar data from PSI; the cause of this discrepancy is discussed.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Absolute p p elastic cross-sections from 492-MeV to 793-MeV using CH-2 targets

Simon, A.J. ; Glass, G. ; McNaughton, M.W. ; et al.
Phys.Rev.C 53 (1996) 30-34, 1996.
Inspire Record 429629 DOI 10.17182/hepdata.25831

pp-elastic differential cross sections are reported at 492 MeV from 40° to 90°, and at 576, 642, 728, and 793 MeV from 75° to 90° c.m., with an absolute accuracy of less than 1%. These data, obtained with polyethylene targets, agree with recent measurements at the same energies obtained with a liquid-hydrogen target. © 1996 The American Physical Society.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

Angular dependence of the p p elastic scattering spin correlation parameter A(00nn) between 0.8 and 2.8 GeV: Results for 1.80-GeV to 2.24-GeV

Allgower, C.E. ; Ball, J. ; Barabash, L.S. ; et al.
Phys.Rev.C 62 (2000) 064001, 2000.
Inspire Record 539075 DOI 10.17182/hepdata.25464

Measurements at 19 beam kinetic energies between 1795 and 2235 MeV are reported for the pp elastic scattering spin correlation parameter A00nn=ANN=CNN. The c.m. angular range is typically 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters. These results are compared to previous data from Saturne II and elsewhere.

21 data tables match query

Measured values of CNN at EKIN 1795 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.110.

Measured values of CNN at EKIN 1845 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.073.

Measured values of CNN at EKIN 1935 Mev.. Fractional systematic uncertainty in the absolute beam and target polarization is +-0.095.

More…

Backward π p elastic scattering at 2.85 and 3.30 GeV/c

Baker, W.F. ; Carlson, P.J. ; Chabaud, V. ; et al.
Phys.Lett.B 25 (1967) 361-364, 1967.
Inspire Record 1389663 DOI 10.17182/hepdata.29442

Backward elastic scattering has been measured for π + p at 2.85 and 3.30 GeV/ c and for π − p at 3.30 GeV/ c . The π + p angular distributions show steep backward peaks, whereas the π − p distribution is flatter. At 2.85 GeV/ c the π + p differential cross section close to 180° is more than twice that at 3.30 GeV/ c , supporting the assignment J P = 11 2 + for Δ δ (2420) resonance. The π + p data at 2.85 GeV/ c indicate the onset of a dip at cos θ c.m. ≈ −0.97.

3 data tables match query

The data for cos(theta) = 1 is the extrapolation.

The data for cos(theta) = 1 and U = 0 are the extrapolations.

The data for cos(theta) = 1 and U = 0 are the extrapolations.


DCS for π − p elastic scattering from 1.2 to 3.0 GeV/ c and phase shift analysis

Aplin, P.S. ; Cowan, I.M. ; Gibson, W.M. ; et al.
Nucl.Phys.B 32 (1971) 253-284, 1971.
Inspire Record 1104030 DOI 10.17182/hepdata.69638

Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.

31 data tables match query

No description provided.

No description provided.

No description provided.

More…