Showing 10 of 546 results
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at parton level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 0.5 < $|y^{t\bar{t}}|$ < 1.1 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.1 < $|y^{t\bar{t}}|$ < 1.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at parton level in the resolved topology in 1.7 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 < $|y^{t\bar{t}}|$ < 1.1 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Measurements of jet substructure describing the composition of quark- and gluon-initiated jets are presented. Proton-proton (pp) collision data at $\sqrt{s}$ =13 TeV collected with the CMS detector are used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Generalized angularities are measured that characterize the jet substructure and distinguish quark- and gluon-initiated jets. These observables are sensitive to the distributions of transverse momenta and angular distances within a jet. The analysis is performed using a data sample of dijet events enriched in gluon-initiated jets, and, for the first time, a Z+jet event sample enriched in quark-initiated jets. The observables are measured in bins of jet transverse momentum, and as a function of the jet radius parameter. Each measurement is repeated applying a "soft drop" grooming procedure that removes soft and large angle radiation from the jet. Using these measurements, the ability of various models to describe jet substructure is assessed, showing a clear need for improvements in Monte Carlo generators.
A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.
Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge or at least three isolated leptons. The search also utilises $b$-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb$^{-1}$. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95% confidence level up to 1.1-1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550-850 GeV for gluino masses around 1 TeV.
This paper presents a search for massive charged long-lived particles produced in pp collisions at $\sqrt{s}=$ 13 TeV at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as $R$-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\sqrt{s}=$ 8 TeV dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and masses are set. Gluino $R$-hadrons with lifetimes above 0.4 ns and decaying to $q\bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 GeV and 1590 GeV. In the case of stable $R$-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.
A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.